首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In Saccharomyces cerevisiae, acetylation of lysine 56 (Lys-56) in the globular domain of histone H3 plays an important role in response to genotoxic agents that interfere with DNA replication. However, the regulation and biological function of this modification are poorly defined in other eukaryotes. Here we show that Lys-56 acetylation in Schizosaccharomyces pombe occurs transiently during passage through S-phase and is normally removed in G(2). Genotoxic agents that cause DNA double strand breaks during replication elicit a delay in deacetylation of histone H3 Lys-56. In addition, mutant cells that cannot acetylate Lys-56 are acutely sensitive to genotoxic agents that block DNA replication. Moreover, we show that Spbc342.06cp, a previously uncharacterized open reading frame, encodes the functional homolog of S. cerevisiae Rtt109, and that this protein acetylates H3 Lys-56 both in vitro and in vivo. Altogether, our results indicate that both the regulation of histone H3 Lys-56 acetylation by its histone acetyltransferase and histone deacetylase and its role in the DNA damage response are conserved among two distantly related yeast model organisms.  相似文献   

3.
Histone acetylation plays important roles for the regulation of many fundamental cellular processes. Saccharomyces cerevisiae Rtt109 is an important class of histone acetyltransferases (HATs), which promote genome stability by directly acetylating newly synthesized histone H3 lysine 56 (H3-K56) through an unknown mechanism. Here, we report the crystal structures of Rtt109 at 2.2 A and Rtt109/Acetyl-CoA binary complex at 1.9 A. The structure displays a vise-like topology with mixed three-layered alpha/beta module forming the central module, whose core region resembles the structure of GCN5 HAT domain and P300/CBP HAT domain. Using structural and biochemical analyses, we have discovered the catalytic active site and have identified Asp288 as the deprotonation residue and Lys290 as the autoacetylation residue. We have further proposed the unique H3-K56 anchoring pocket and the potential H3alphaN binding groove. Our work has provided structural insights to understand the acetylation mechanism of H3-K56 by Rtt109.  相似文献   

4.
Acetylation of histone H3 on lysine 56 occurs during mitotic and meiotic S phase in fungal species. This acetylation blocks a direct electrostatic interaction between histone H3 and nucleosomal DNA, and the absence of this modification is associated with extreme sensitivity to genotoxic agents. We show here that H3-K56 acetylation is catalyzed when Rtt109, a protein that lacks significant homology to known acetyltransferases, forms an active complex with either of two histone binding proteins, Asf1 or Vps75. Rtt109 binds to both these cofactors, but not to histones alone, forming enzyme complexes with kinetic parameters similar to those of known histone acetyltransferase (HAT) enzymes. Therefore, H3-K56 acetylation is catalyzed by a previously unknown mechanism that requires a complex of two proteins: Rtt109 and a histone chaperone. Additionally, these complexes are functionally distinct, with the Rtt109/Asf1 complex, but not the Rtt109/Vps75 complex, being critical for resistance to genotoxic agents.  相似文献   

5.
Post-translational histone modifications abound and regulate multiple nuclear processes. Most modifications are targeted to the amino-terminal domains of histones. Here we report the identification and characterization of acetylation of lysine 56 within the core domain of histone H3. In the crystal structure of the nucleosome, lysine 56 contacts DNA. Phenotypic analysis suggests that lysine 56 is critical for histone function and that it modulates formamide resistance, ultraviolet radiation sensitivity, and sensitivity to hydroxyurea. We show that the acetylated form of histone H3 lysine 56 (H3-K56) is present during interphase, metaphase, and S phase. Finally, reverse genetic analysis indicates that none of the known histone acetyltransferases is solely responsible for H3-K56 acetylation in Saccharomyces cerevisiae.  相似文献   

6.
In budding yeast, acetylation of histone H3 lysine 56 (H3-K56) is catalyzed by the Rtt109-Vps75 histone acetyltransferase (HAT) complex, with Rtt109 being the catalytic subunit, and histone chaperone Asf1 is required for this modification. Cells lacking Rtt109 are susceptible to perturbations in DNA replication. However, how Asf1 regulates acetylation of H3-K56 and how loss of H3-K56 acetylation affects DNA replication are unclear. We show that at low concentrations the Rtt109-Vps75 HAT complex acetylates H3-K56 in vitro when H3/H4 is complexed with Asf1, but not H3/H4 tetramers, recapitulating the in vivo requirement of Asf1 for H3-K56 acetylation using recombinant proteins. Moreover, the Rtt109-Vps75 complex interacts with Asf1-H3/H4 but not Asf1. In vivo, the Rtt109-Asf1 interaction is also dependent on the ability of Asf1 to bind H3/H4. Furthermore, the Rtt109 homolog in Schizosaccharomyces pombe (SpRtt109) also displayed an Asf1-dependent H3-K56 HAT activity in vitro. These results indicate that Asf1 regulates H3-K56 acetylation by presenting histones H3 and H4 to Rtt109-Vps575 for acetylation, and this mechanism is likely to be conserved. Finally, we have shown that cells lacking Rtt109 or expressing H3-K56 mutants exhibited significant reduction in the association of three proteins with stalled DNA replication forks and hyper-recombination of replication forks stalled at replication fork barriers of the ribosomal DNA locus compared with wild-type cells. Taken together, these studies provide novel insight into the role of Asf1 in the regulation of H3-K56 acetylation and the function of this modification in DNA replication.  相似文献   

7.
Metabolic reprogramming is a hallmark of cancer cells, but the mechanisms are not well understood. The mammalian target of rapamycin complex 2 (mTORC2) controls cell growth and proliferation and plays a critical role in metabolic reprogramming in glioma. mTORC2 regulates cellular processes such as cell survival, metabolism, and proliferation by phosphorylation of AGC kinases. Components of mTORC2 are shown to localize to the nucleus, but whether mTORC2 modulates epigenetic modifications to regulate gene expression is not known. Here, we identified histone H3 lysine 56 acetylation (H3K56Ac) is regulated by mTORC2 and show that global H3K56Ac levels were downregulated on mTORC2 knockdown but not on mTORC1 knockdown. mTORC2 promotes H3K56Ac in a tuberous sclerosis complex 1/2 (TSC1/2) mediated signaling pathway. We show that knockdown of sirtuin6 (SIRT6) prevented H3K56 deacetylation in mTORC2 depleted cells. Using glioma model consisting of U87EGFRvIII cells, we established that mTORC2 promotes H3K56Ac in glioma. Finally, we show that mTORC2 regulates the expression of glycolytic genes by regulating H3K56Ac levels at the promoters of these genes in glioma cells and depletion of mTOR leads to increased recruitment of SIRT6 to these promoters. Collectively, these results identify mTORC2 signaling pathway positively promotes H3K56Ac through which it may mediate metabolic reprogramming in glioma.  相似文献   

8.
The packaging of eukaryotic DNA into chromatin is likely to be crucial for the maintenance of genomic integrity. Histone acetylation and deacetylation, which alter chromatin accessibility, have been implicated in DNA damage tolerance. Here we show that Schizosaccharomyces pombe Hst4, a homolog of histone deacetylase Sir2, participates in S-phase-specific DNA damage tolerance. Hst4 was essential for the survival of cells exposed to the genotoxic agent methyl methanesulfonate (MMS) as well as for cells lacking components of the DNA damage checkpoint pathway. It was required for the deacetylation of histone H3 core domain residue lysine 56, since a strain with a point mutation of its catalytic domain was unable to deacetylate this residue in vivo. Hst4 regulated the acetylation of H3 K56 and was itself cell cycle regulated. We also show that MMS treatment resulted in increased acetylation of histone H3 lysine 56 in wild-type cells and hst4Delta mutants had constitutively elevated levels of histone H3 K56 acetylation. Interestingly, the level of expression of Hst4 decreased upon MMS treatment, suggesting that the cell regulates access to the site of DNA damage by changing the level of this protein. Furthermore, we find that the phenotypes of both K56Q and K56R mutants of histone H3 were similar to those of hst4Delta mutants, suggesting that proper regulation of histone acetylation is important for DNA integrity. We propose that Hst4 is a deacetylase involved in the restoration of chromatin structure following the S phase of cell cycle and DNA damage response.  相似文献   

9.
10.
The SIR2 homologues HST3 and HST4 have been implicated in maintenance of genome integrity in the yeast Saccharomyces cerevisiae. We find that Hst3 has NAD-dependent histone deacetylase activity in vitro and that it functions during S phase to deacetylate the core domain of histone H3 at lysine 56 (H3K56). In response to genotoxic stress, Hst3 undergoes rapid Mec1-dependent phosphorylation and is targeted for ubiquitin-mediated proteolysis, thus providing a mechanism for the previously observed checkpoint-dependent accumulation of Ac-H3K56 at sites of DNA damage. Loss of Hst3-mediated regulation of H3K56 acetylation results in a defect in the S phase DNA damage checkpoint. The pathway that regulates H3K56 acetylation acts in parallel with the Rad9 pathway to transmit a DNA damage signal from Mec1 to Rad53. We also observe that loss of Hst3 function impairs sister chromatid cohesion (SCC). Both S phase checkpoint and SCC defects are phenocopied by H3K56 point mutants. Our findings demonstrate that Hst3-regulated H3K56 acetylation safeguards genome stability by controlling the S phase DNA damage response and promoting SCC.  相似文献   

11.
12.
13.
14.
15.
Target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrients, growth factors, and stress signals to promote survival and growth in all eukaryotes. The reported land plant resistance to rapamycin and the embryo lethality of the Arabidopsis tor mutants have hindered functional dissection of TOR signaling in plants. We developed sensitive cellular and seedling assays to monitor endogenous Arabidopsis TOR activity based on its conserved S6 kinase (S6K) phosphorylation. Surprisingly, rapamycin effectively inhibits Arabidopsis TOR-S6K1 signaling and retards glucose-mediated root and leaf growth, mimicking estradiol-inducible tor mutants. Rapamycin inhibition is relieved in transgenic plants deficient in Arabidopsis FK506-binding protein 12 (FKP12), whereas FKP12 overexpression dramatically enhances rapamycin sensitivity. The role of Arabidopsis FKP12 is highly specific as overexpression of seven closely related FKP proteins fails to increase rapamycin sensitivity. Rapamycin exerts TOR inhibition by inducing direct interaction between the TOR-FRB (FKP-rapamycin binding) domain and FKP12 in plant cells. We suggest that variable endogenous FKP12 protein levels may underlie the molecular explanation for longstanding enigmatic observations on inconsistent rapamycin resistance in plants and in various mammalian cell lines or diverse animal cell types. Integrative analyses with rapamycin and conditional tor and fkp12 mutants also reveal a central role of glucose-TOR signaling in root hair formation. Our studies demonstrate the power of chemical genetic approaches in the discovery of previously unknown and pivotal functions of glucose-TOR signaling in governing the growth of cotyledons, true leaves, petioles, and primary and secondary roots and root hairs.  相似文献   

16.
Loewith R  Hall MN 《Genetics》2011,189(4):1177-1201
TOR (Target Of Rapamycin) is a highly conserved protein kinase that is important in both fundamental and clinical biology. In fundamental biology, TOR is a nutrient-sensitive, central controller of cell growth and aging. In clinical biology, TOR is implicated in many diseases and is the target of the drug rapamycin used in three different therapeutic areas. The yeast Saccharomyces cerevisiae has played a prominent role in both the discovery of TOR and the elucidation of its function. Here we review the TOR signaling network in S. cerevisiae.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号