首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive oxygen species (ROS) are important mediators of cellular signal transduction cascades such as proliferation, migration, and apoptosis. Chronic exposure of isolated β-cells to proinflammatory cytokines elevates intracellular oxidative stress leading to the demise of pancreatic β-cells culminating in the onset of diabetes. Although the mitochondrial electron transport chain is felt to be the primary source of ROS, several lines of recent evidence suggest that phagocyte-like NADPH oxidase plays a central role in cytokine-mediated ROS generation and apoptosis of β-cells. However, the precise mechanisms underlying the regulation of NADPH oxidase remain unknown. To address this, insulin-secreting INS 832/13 cells were treated with cytomix (IL-1β, IFN-γ, and TNF-α; 10 ng/ml each) for different time intervals (0-24 h). A significant, time-dependent increase in NADPH oxidase activation/intracellular ROS production, p47(phox) subunit, but not p67(phox) subunit, expression of the phagocyte-like NADPH oxidase were demonstrable under these conditions. Furthermore, siRNA-p47(phox) transfection or exposure of INS 832/13 cells to apocynin, a selective inhibitor of NADPH oxidase, markedly attenuated cytomix-induced ROS generation in these cells. Cytomix-mediated mitochondrial dysfunction in INS 832/13 cells was evident by a significant loss of mitochondrial membrane potential (MMP) and upregulated caspase 3 activity. Cytomix treatment also caused a transient (within 15 min) activation of Rac1, a component of the NADPH oxidase holoenzyme. Furthermore, GGTI-2147 and NSC23766, known Rac1 inhibitors, not only attenuated the cytomix-induced Rac1 activation but also significantly prevented loss of MMP (NSC23766 > GGTI-2147). However, NSC23766 had no effect on cytomix-induced NO generation or caspase 3 activation, suggesting additional regulatory mechanisms might underlie these signaling steps. Together, these findings suggested that Rac1-mediated regulation of phagocyte-like NADPH oxidase contributes to cytokine-mediated mitochondrial dysfunction in the β-cell.  相似文献   

2.
Reactive oxygen species (ROS) are produced in mammalian cells through enzymic and non-enzymic mechanisms. Although some ROS production pathways are needed for specific physiological functions, excessive production is detrimental and is regarded as the basis of numerous neurodegenerative diseases. Among enzymes producing superoxide anions, NADPH oxidase is widespread in mammalian cells and is an important source of ROS in mediating physiological and pathological processes in the cardiovascular and the CNS. ROS production is linked to the alteration of intracellular calcium homeostasis, activation of Ca(2+)-dependent enzymes, alteration of cytoskeletal proteins, and degradation of membrane glycerophospholipids. There is evolving evidence that ROS produced by NADPH oxidase regulate neuronal functions and degrade membrane phospholipids through activation of phospholipases A(2) (PLA(2)). This review is intended to cover recent studies describing ROS generation from NADPH oxidase in the CNS and its downstream activation of PLA(2), namely, the group IV cytosolic cPLA(2) and the group II secretory sPLA(2). A major focus is to elaborate the dual role of NADPH oxidase and PLA(2) in mediating the oxidative and inflammatory responses in neurodegenerative diseases, including cerebral ischemia and Alzheimer's disease. Elucidation of the signaling pathways linking NADPH oxidase with the multiple forms of PLA(2) will be important in understanding the oxidative and degradative mechanisms that underline neuronal damage and glial activation and will facilitate development of therapeutic intervention for prevention and treatment of these and other neurodegenerative diseases.  相似文献   

3.
Fas-Fas ligand (FasL)-dependent pathways exert a suppressive effect on inflammatory responses in immune-privileged organs. FasL expression in hepatic Kupffer cells (KC) has been implicated in hepatic immunoregulation. In this study, modulation of FasL expression of KC by endogenous gut-derived bacterial LPS and the role of reactive oxygen species (ROS) as potential mediators of FasL expression in KC were investigated. LPS stimulation of KC resulted in upstream ROS generation and, subsequently, increased FasL expression and consequent Jurkat cell (Fas-positive) apoptosis. The NADPH oxidase and xanthine oxidase enzymatic pathways appear to be major sources of this upstream ROS generation. Increased FasL expression was blocked by antioxidants and by enzymatic blocking of ROS generation. Exogenous administration of H2O2 stimulated KC FasL expression and subsequent Jurkat cell apoptosis. Intracellular endogenous ROS generation may therefore represent an important signal transduction pathway for FasL expression in KC.  相似文献   

4.
The extracellular matrix (ECM) facilitates pancreatic cancer cells survival, which is of central importance for pancreatic adenocarcinoma that is highly fibrotic. Here, we show that reactive oxygen species (ROS) mediate the prosurvival effect of ECM in human pancreatic cancer cells. Fibronectin and laminin stimulated ROS production and NADPH oxidase activation in pancreatic cancer cells. Both pharmacological and molecular approaches show that fibronectin stimulated ROS production through activation of NADPH oxidase and NADPH oxidase-independent pathways and that 5-lipoxygenase (5-LO) mediates both these pathways. Analyses of the mechanisms of ROS production by ECM proteins and growth factors indicate that activation of NADPH oxidase (Nox4) is a common mechanism employed both by ECM proteins and growth factors to increase ROS in pancreatic cancer cells. We also found that Nox4 is present in human pancreatic adenocarcinoma tissues and that these tissues display membrane NADPH oxidase activity. ECM proteins and growth factors activate NADPH oxidase through different mechanisms; in contrast to ECM proteins, growth factors activate NADPH oxidase through 5-LO-independent mechanisms. Inhibition of 5-LO or NADPH oxidase with pharmacological inhibitors of these enzymes and with Nox4 or 5-LO antisense oligonucleotides markedly stimulated apoptosis in cancer cells cultured on fibronectin. Our results indicate that ROS generation via 5-LO and downstream NADPH oxidase mediates the prosurvival effect of ECM in pancreatic cancer cells. These mechanisms may play an important role in pancreatic cancer resistance to treatments and thus represent novel therapeutic targets.  相似文献   

5.
Neutrophils act as the first line of innate immune defense against invading microorganisms during infection and inflammation. The tightly regulated production of reactive oxygen species (ROS) through activation of NADPH oxidase is a major weapon used by neutrophils and other phagocytic leukocytes to combat such pathogens. Cellular adhesion signals play important physiological roles in regulating the activation of NADPH oxidase and subsequent ROS formation. We previously showed that the initial suppression of the oxidase response of chemoattractant-stimulated adherent neutrophils is mediated via inhibition of Vav1-induced activation of the NADPH oxidase regulatory GTPase Rac2 by adhesion signals. In this study we show that prior exposure of neutrophils to a number of cytokines and inflammatory mediators, including TNF-alpha, GM-CSF, and platelet-activating factor, overcomes the adhesion-mediated suppression of ROS formation. Proline-rich tyrosine kinase 2 (pyk2) activity is enhanced under these conditions, correlating with the restoration of Vav1 and Rac2 activities. Both dominant negative pyk2 and a pyk2-selective inhibitor prevented restoration of ROS production induced by TNF-alpha, GM-CSF, and platelet-activating factor, and this loss of pyk2 activity resulted in decreased Vav1 tyrosine phosphorylation and subsequent Rac2 activation. Our studies identify pyk2 as a critical regulatory component and a molecular switch to overcome the suppression of leukocyte oxidant generation by cell adhesion. This activity constitutes a mechanism by which cytokines might lead to rapid elimination of invading pathogens by adherent neutrophils under normal conditions or enhance tissue damage in pathological states.  相似文献   

6.
Beak SM  Lee YS  Kim JA 《Biochimie》2004,86(7):425-429
The detrimental effects of ultraviolet B (UVB) irradiation have been connected with the enhanced generation of reactive oxygen species (ROS) by UVB. However, the exact source of ROS produced by UVB has not been clearly revealed yet. In this study, we determined the source of ROS production and its role in the UVB-induced activation of nuclear factor (NF)-kappaB in HaCaT human keratinocytes. UVB irradiation generated ROS in a dose-dependent manner, and this was significantly inhibited by diphenylene iodonium (DPI), apocynin (Apo) and neopterine (Neo), inhibitors of the NADPH oxidase, and indomethacin (Indo), a cyclooxygenase (COX) inhibitor, but not by the mitochondrial electron transport inhibitors and other cytosolic enzyme inhibitors. In addition, these inhibitors of the NADPH oxidase and COX significantly blocked the UVB irradiation-induced nuclear translocation of NF-kappaB. These results suggest that the NADPH oxidase and COX may be major sources for the UVB-induced ROS generation, and play an essential role in the activation of NF-kappaB which is involved in the expression of a variety of genes induced by UVB in HaCaT cells. These results further suggest that these enzymes may be good targets for the preventive strategy of UVB-induced skin injury.  相似文献   

7.
《Free radical research》2013,47(7):742-750
Abstract

4-Hydroxynonenal (HNE) mediates oxidative stress-linked pathological processes; however, its role in the generation of reactive oxygen species (ROS) in macrophages is still unclear. Thus, this study investigated the sources and mechanisms of ROS generation in macrophages stimulated with HNE. Exposure of J774A.1 cells to HNE showed an increased production of ROS, which was attenuated by NADPH oxidase as well as 5-lipoxygenase (5-LO) inhibitors. Linked to these results, HNE increased membrane translocation of p47phox promoting NADPH oxidase activity, which was attenuated in peritoneal macrophages from 5-LO-deficient mice as well as in J774A.1 cells treated with a 5-LO inhibitor, MK886 or 5-LO siRNA. In contrast, HNE-enhanced 5-LO activity was not affected by inhibition of NADPH oxidase. Furthermore, leukotriene B4, 5-LO metabolite, was found to enhance NADPH oxidase activity in macrophages. Altogether, these results suggest that 5-LO plays a critical role in HNE-induced ROS generation in murine macrophages through activation of NADPH oxidase.  相似文献   

8.
Vascular NADPH oxidases have been shown to be a major source of reactive oxygen species (ROS). Recent studies have also implicated ROS in the proliferation of vascular smooth muscle cells. However, the components required for activation of the NADPH oxidase complex have not been clearly elucidated. Here we demonstrate that ROS generation in ovine pulmonary arterial smooth muscle cells (PASMCs) requires the activation of Rac1, implicating this protein as an important subunit of the NADPH oxidase complex. Our results, using a geranylgeranyl transferase inhibitor (GGTI-287), demonstrated a dose-dependent inhibition of Rac1 activity and ROS production. This was associated with an inhibition of PASMC proliferation with an arrest at G(2)/M. The inhibition of Rac1 by GGTI-287 led us to more specifically target Rac1 to investigate its role in the generation of ROS and cellular proliferation. To accomplish this, we utilized a dominant negative Rac1 (N17Rac1) and a constitutively active Rac1 (V12Rac1). These two forms of Rac1 were transiently expressed in PASMCs using adenovirus-mediated gene transfer. N17Rac1 expression resulted in decreased cellular Rac1 activity, whereas V12Rac1 infection showed increased activity. Compared with controls, the V12Rac1-expressing cells had higher levels of ROS production and increased proliferation, whereas the N17Rac1-expressing cells had decreased ROS generation and proliferation and cell cycle arrest at G(2)/M. However, the inhibition of cell growth produced by N17Rac1 overexpression could be overcome if cells were co-incubated with the Cu,Zn superoxide dismutase inhibitor DETC. These results indicate the importance of Rac1 in ROS generation and proliferation of vascular smooth muscle cells.  相似文献   

9.
10.
Nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) mediated generation of reactive oxygen species (ROS) was originally identified as the powerful host defense machinery against microorganism in phagocytes. But recent reports indicated that some non-phagocytic cells also have the NADPH oxidase activity, and the ROS produced by it may act as cell signal molecule. But as far as today, whether the NADPH oxidase also plays similar role in phagocyte has not been paid much attention. Utilizing the undifferentiated HL-60 promyelocytic leukemia cells as a model, the aim of the present study was to determine whether NADPH oxidase plays a role on ROS generation in undifferentiated HL-60, and the ROS mediated by it was essential for cell's survival. For the first time, we verified that the release of ROS in undifferentiated HL-60 was significantly increased by the stimulation with Calcium ionophore or opsonized zymosan, which are known to trigger respiration burst in phagocytes by NADPH oxidase pathway. Diphenylene iodonium (DPI) or apocynin (APO), two inhibitors of NADPH oxidase, significantly suppressed the increasing of ROS caused by opsonized zymosan. Cell survival assay and fluorescence double dyeing with acridine orange and ethidium bromide showed that DPI and APO, as well as superoxide dismutase (SOD) and catalase (CAT) concentration-dependently decreased the viability of undifferentiated HL-60 cells, whereas exogenous H2O2 can rescue the cells from death obviously. Our results suggested that the ROS, generated by NADPH oxidase play an essential role in the survival of undifferentiated HL-60 cells.  相似文献   

11.
There is increasing evidence that intracellular reactive oxygen species (ROS) play a role in cell signaling and that the NADPH oxidase is a major source of ROS in endothelial cells. At low concentrations, agonist stimulation of membrane receptors generates intracellular ROS and repetitive oscillations of intracellular Ca(2+) concentration ([Ca(2+)](i)) in human endothelial cells. The present study was performed to examine whether ROS are important in the generation or maintenance of [Ca(2+)](i) oscillations in human aortic endothelial cells (HAEC) stimulated by histamine. Histamine (1 microm) increased the fluorescence of 2',7'-dihydrodichlorofluorescin diacetate in HAEC, an indicator of ROS production. This was partially inhibited by the NADPH oxidase inhibitor diphenyleneiodonium (DPI, 10 microm), by the farnesyltransferase inhibitor H-Ampamb-Phe-Met-OH (2 microm), and in HAEC transiently expressing Rac1(N17), a dominant negative allele of the protein Rac1, which is essential for NADPH oxidase activity. In indo 1-loaded HAEC, 1 microm histamine triggered [Ca(2+)](i) oscillations that were blocked by DPI or H-Ampamb-Phe-Met-OH. Histamine-stimulated [Ca(2+)](i) oscillations were not observed in HAEC lacking functional Rac1 protein but were observed when transfected cells were simultaneously exposed to a low concentration of hydrogen peroxide (10 microm), which by itself did not alter either [Ca(2+)](i) or levels of inositol 1,4,5-trisphosphate (Ins-1,4,5-P(3)). Thus, histamine generates ROS in HAEC at least partially via NADPH oxidase activation. NADPH oxidase-derived ROS are critical to the generation of [Ca(2+)](i) oscillations in HAEC during histamine stimulation, perhaps by increasing the sensitivity of the endoplasmic reticulum to Ins-1,4,5-P(3).  相似文献   

12.
Panaxydol, a polyacetylenic compound derived from Panax ginseng roots, has been shown to inhibit the growth of cancer cells. In this study, we demonstrated that panaxydol induced apoptosis preferentially in transformed cells with a minimal effect on non-transformed cells. Furthermore, panaxydol was shown to induce apoptosis through an increase in intracellular Ca2+ concentration ([Ca2+]i), activation of JNK and p38 MAPK, and generation of reactive oxygen species (ROS) initially by NADPH oxidase and then by mitochondria. Panaxydol-induced apoptosis was caspase-dependent and occurred through a mitochondrial pathway. ROS generation by NADPH oxidase was critical for panaxydol-induced apoptosis. Mitochondrial ROS production was also required, however, it appeared to be secondary to the ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the membrane translocation of regulatory p47phox and p67phox subunits and shown to be necessary for ROS generation by panaxydol treatment. Panaxydol triggered a rapid and sustained increase of [Ca2+]i, which resulted in activation of JNK and p38 MAPK. JNK and p38 MAPK play a key role in activation of NADPH oxidase, since inhibition of their expression or activity abrogated membrane translocation of p47phox and p67phox subunits and ROS generation. In summary, these data indicate that panaxydol induces apoptosis preferentially in cancer cells, and the signaling mechanisms involve a [Ca2+]i increase, JNK and p38 MAPK activation, and ROS generation through NADPH oxidase and mitochondria.  相似文献   

13.
Hypoxia favored the preservation of progenitor characteristics of hematopoietic stem and progenitor cells (HSPCs) in bone marrow. This work aimed at studying the role of reactive oxygen species (ROS)-generating NADPH oxidase system regulated by hypoxia in ex vivo cultures of cord blood CD34+ cells. The results showed that NADPH oxidase activity and ROS generation were reduced in hypoxia with respect to normal oxygen tension. Meanwhile the ROS generation was found to be inhibited by diphenyleneiodonium (the NADPH oxidase inhibitor), or N-acetylcysteine (the ROS scavenger). Accordingly NADPH oxidase mRNA and p67 protein levels decreased in hypoxia. The analysis of progenitor characteristics, including the proportion of cultured cells expressing the HSPCs marker CD34+CD38, colony production ability of the colony-forming cells (CFCs), and the re-expansion capability of the cultured CD34+ cells, showed that either 5% pO2 or reduced ROS favored preserving the characteristics of CD34+ progenitors, and promoted the expansion of CD34+CD38 cells as well. The above results demonstrated that hypoxia effectively maintained biological characteristics of CD34+ cells through keeping lower intracellular ROS levels by regulating NADPH oxidase.  相似文献   

14.
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.  相似文献   

15.
A major source of reactive oxygen species (ROS) in endothelial cells is the NADPH oxidase enzyme complex. The selective distributions of any enzyme within cells have important implications in regulating enzyme effectiveness through facilitation of access to local substrates and/or product targets. Because membrane rafts provide a spatially preferable environment for a variety of enzyme systems, we sought to determine whether NADPH oxidase is present and functional in this plasma membrane compartment in endothelial cells. We found that, in resting endothelial cells, NADPH oxidase subunits were preassembled and the enzyme functional in membrane rafts, specifically in caveolae. Stimulation with TNF-alpha induced additional recruitment of the p47(phox) regulatory subunit to raft-localized NADPH oxidase and enhanced ROS production within raft domains. TNF-alpha also induced nitric oxide production through activation of endothelial nitric oxide synthase (eNOS) present in the same membrane compartment. The dual activation of superoxide and nitric oxide-generating systems provided a spatially favorable environment for nitration of tyrosine-containing proteins localized to rafts. Perturbation of membrane raft structural integrity with cholesterol-sequestering compounds caused the delocalization of NADPH oxidase subunits and eNOS from the rafts and inhibited TNF-alpha-induced ROS production and protein tyrosine nitration. Together, these data provide evidence that membrane rafts and caveolae play a role in the spatial regulation of NADPH oxidase and subsequent ROS/reactive nitrogen species in endothelial cells.  相似文献   

16.
Khz is a compound derived from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia that inhibits the growth of cancer cells. The results of the present study show that Khz induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz induced apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating JNK to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-induced apoptosis was caspase-dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the translocation of regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz. Khz triggered a rapid and sustained increase in [Ca2+]i, which activated JNK. JNK plays a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. In summary, these data indicate that Khz preferentially induces apoptosis in cancer cells, and the signaling mechanisms involve an increase in [Ca2+]i, JNK activation, and ROS generation via NADPH oxidase and mitochondria.  相似文献   

17.
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase catalyzes the transfer of electrons from NADPH to O2, which is the main source of reactive oxygen species (ROS) in nonphagocytic cells. Excess ROS are toxic; therefore, keeping ROS in homeostasis in cells can protect cells from oxidative damage. It is meaningful to further understand the molecular mechanism by which ROS homeostasis is mediated. Human protein HSCARG is a newly identified oxidative sensor and a negative regulator of NF-κB. Here, we find that HSCARG represses the cellular ROS generation through inhibiting mRNA and protein expression of p47phox, a subunit of NADPH oxidase. In contrast, shRNA-mediated HSCARG knockdown increases endogenous p47phox expression level. And HSCARG has no obvious effect on ROS production in p47phox-depleted cells. Furthermore, HSCARG regulates p47phox through inhibition of NF-κB activity. Our findings identify HSCARG as a novel regulator in regulation of the activity of NADPH oxidase and ROS homeostasis.  相似文献   

18.
Although the actin cytoskeleton has been implicated in the control of NADPH oxidase in phagocytosis, very little is known about the cytoskeletal regulation of endothelial NADPH oxidase assembly and activation. Here, we report a role for cortactin and the tyrosine phosphorylation of cortactin in hyperoxia-induced NADPH oxidase activation and ROS production in human pulmonary artery ECs (HPAECs). Exposure of HPAECs to hyperoxia for 3 h induced NADPH oxidase activation, as demonstrated by enhanced superoxide production. Hyperoxia also caused a thickening of the subcortical dense peripheral F-actin band and increased the localization of cortactin in the cortical regions and lamellipodia at cell-cell borders that protruded under neighboring cells. Pretreatment of HPAECs with the actin-stabilizing agent phallacidin attenuated hyperoxia-induced cortical actin thickening and ROS production, whereas cytochalasin D and latrunculin A enhanced basal and hyperoxia-induced ROS formation. In HPAECs, a 3-h hyperoxic exposure enhanced the tyrosine phosphorylation of cortactin and interaction between cortactin and p47(phox), a subcomponent of the EC NADPH oxidase, when compared with normoxic cells. Furthermore, transfection of HPAECs with cortactin small interfering RNA or myristoylated cortactin Src homology domain 3 blocking peptide attenuated ROS production and the hyperoxia-induced translocation of p47(phox) to the cell periphery. Similarly, down-regulation of Src with Src small interfering RNA attenuated the hyperoxia-mediated phosphorylation of cortactin tyrosines and blocked the association of cortactin with actin and p47(phox). In addition, the hyperoxia-induced generation of ROS was significantly lower in ECs expressing a tyrosine-deficient mutant of cortactin than in vector control or wild-type cells. These data demonstrate a novel function for cortactin and actin in hyperoxia-induced activation of NADPH oxidase and ROS generation in human lung endothelial cells.  相似文献   

19.
Loss of fluid shear stress (ischemia) to the lung endothelium causes endothelial plasma membrane depolarization via ATP-sensitive K(+) (K(ATP)) channel closure, initiating a signaling cascade that leads to NADPH oxidase (NOX2) activation and ROS production. Since wortmannin treatment significantly reduces ROS production with ischemia, we investigated the role of phosphoinositide 3-kinase (PI3K) in shear-associated signaling. Pulmonary microvascular endothelial cells in perfused lungs subjected to abrupt stop of flow showed membrane depolarization and ROS generation. Stop of flow in flow-adapted mouse pulmonary microvascular endothelial cells in vitro resulted in the activation of PI3K and Akt as well as ROS generation. ROS generation in the lungs in situ was almost abolished by the PI3K inhibitor wortmannin and the PKC inhibitor H7. The combination of the two (wortmannin and H7) did not have a greater effect. Activation of NOX2 was greatly diminished by wortmannin, knockout of Akt1, or dominant negative PI3K, whereas membrane depolarization was unaffected. Ischemia-induced Akt activation (phosphorylation) was not observed with K(ATP) channel-null cells, which showed minimal changes in membrane potential with ischemia. Activation of Akt was similar to wild-type cells in NOX2-null cells, which do not generate ROS with ischemia. Cromakalim, a K(ATP) channel agonist, prevented both membrane depolarization and Akt phosphorylation with ischemia. Thus, Akt1 phosphorylation follows cell membrane depolarization and precedes the activation of NOX2. These results indicate that PI3K/Akt and PKC serve as mediators between endothelial cell membrane depolarization and NOX2 assembly.  相似文献   

20.
Acute promyelocytic leukemia (APL) cells are characterized by PML/RARalpha fusion protein, high responsiveness to arsenic trioxide (ATO)-induced cytotoxicity and an abundant generation of reactive oxygen species (ROS). In this study we investigated the association among these three features in APL-derived NB4 cells. We found that NADPH oxidase-derived ROS generation was more abundant in NB4 cells compared with monocytic leukemia U937 cells. By using PR9, a sub-line of U937 stably transduced with the inducible PML/RARalpha expression vectors, we attributed disparities on ROS generation and ATO sensitivity to the occurrence of PML/RARalpha fusion protein, since PML/RARalpha-expressing cells appeared higher NADPH oxidase activity, higher ROS level and higher sensitivity to ATO. On the other hand, the basal intensity of cAMP signaling pathway was compared between NB4 and U937 as well as between PR9 cells with or without PML/RARalpha, demonstrating that PML/RARalpha-expressing cells had an impaired cAMP signaling pathway which relieved its inhibitory effect on NADPH oxidase derived ROS generation. In summary, the present study demonstrated the correlation of PML/RARalpha with cAMP signaling pathway, NADPH oxidase and ROS generation in APL cells. PML/RARalpha that bestows NB4 cells various pathological features, paradoxically also endows these cells with the basis for susceptibility to ATO-induced cytotoxcity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号