首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Maternal hypertriglyceridemia is a normal condition in late gestation and is an adaptation to ensure an adequate nutrient supply to the fetus. Placental lipoprotein lipase (LPL) is involved in the initial step in transplacental fatty acid transport as it hydrolyzes maternal triglycerides (TG) to release free fatty acids (FFA). We investigated LPL activity and protein (Western blot) and mRNA expression (real-time RT-PCR) in the placenta of an LPL-deficient mother with marked hypertriglyceridemia. The LPL activity was fourfold lower, LPL protein expression 50% lower, and mRNA expression threefold higher than that of normal, healthy placentas at term (n = 4-7). To further investigate the role of maternal lipids in placental LPL regulation, we isolated placental cytotrophoblasts from term placentas and studied LPL activity and protein and mRNA expression after incubation in Intralipid (as a source of TG) and oleic, linoleic, and a combination of oleic, linoleic, and arachidonic acids as well as insulin. Intralipid (40 and 400 mg/dl) decreased LPL activity by approximately 30% (n = 10-14, P < 0.05) and 400 microM linoleic and linoleic-oleic-arachidonic acid (n = 10) decreased LPL activity by 37 and 34%, respectively. No major changes were observed in LPL protein or mRNA expression. We found no effect of insulin on LPL activity or protein expression in the cultured trophoblasts. To conclude, the activity of placental LPL is reduced by high levels of maternal TG and/or FFA. This regulatory mechanism may serve to counteract an excessive delivery of FFA to the fetus in conditions where maternal TG levels are markedly increased.  相似文献   

2.
We have examined the nutritional and insulin regulation of the mRNA expression of transmembrane fatty acid (FA) transporters [FA transport protein-1 (FATP1) and CD36] together with the lipoprotein lipase (LPL), the cytosolic FA carrier FA binding protein (FABP3), and mitochondrial FA-CoA and -carnitine palmitoyl transferase carriers (CPT)1 and -2 in Atlantic salmon tissues and myocyte cell culture. Two weeks of fasting diminished FATP1, CD36, and LPL in adipose tissue, suggesting a reduction in FA uptake, while FABP3 increased in liver, probably enhancing the transport of FA to the mitochondria. Insulin injection decreased FATP1 and CD36 in white and red muscles, while both transporters were upregulated in the adipose tissue in agreement with the role of insulin-inhibiting muscle FA oxidation and stimulating adipose fat stores. Serum deprivation of 48 h in Atlantic salmon myotubes increased FATP1, FABP3, and CPT-2, while CPT-1 was diminished. In myotubes, insulin induced FATP1 expression but decreased CD36, FABP3, and LPL, suggesting that FATP1 could be more involved in the insulin-stimulated FA uptake. Insulin increased the FA uptake in myotubes mediated, at least in part, through the relocation of FATP1 protein to the plasma membrane. Overall, Atlantic salmon FA transporters are regulated by fasting and insulin on in vivo and in vitro models.  相似文献   

3.

Background

Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR).

Methods and Principal Findings

VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT.

Conclusions

Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons.  相似文献   

4.
Fatty acid metabolism and oxidation capacity in the placenta, which likely affects the rate and composition of lipid delivered to the fetus remains poorly understood. Long chain polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), are critical for fetal growth and brain development. We determined the impact of maternal obesity on placental fatty acid oxidation, esterification and transport capacity by measuring PhosphatidylCholine (PC) and LysoPhosphatidylCholine (LPC) containing DHA by mass spectrometry in mother-placenta-baby triads as well as placental free carnitine and acylcarnitine metabolites in women with normal and obese pre-pregnancy BMI. Placental protein expression of enzymes involved in beta-oxidation and esterification pathways, MFSD2a (lysophosphatidylcholine transporter) and OCTN2 (carnitine transporter) expression in syncytiotrophoblast microvillous (MVM) and basal (BM) membranes were determined by Western Blot. Maternal obesity was associated with decreased umbilical cord plasma DHA in LPC and PC fractions in male, but not female, fetuses. Basal membrane MFSD2a protein expression was increased in placenta of males of obese mothers. In female placentas, despite an increased MVM OCTN2 expression, maternal obesity was associated with a reduced MUFA-carnitine levels and increased esterification enzymes. We speculate that lower DHA-PL in fetal circulation of male offspring of obese mothers, despite a significant increase in transporter expression for LPC-DHA, may lead to low DHA needed for brain development contributing to neurological consequences that are more prevalent in male children. Female placentas likely have reduced beta-oxidation capacity and appear to store FA through greater placental esterification, suggesting impaired placenta function and lipid transfer in female placentas of obese mothers.  相似文献   

5.
6.
7.
Placenta tissue may be a major source of lipid peroxidation products in pregnancy. It was proven that placental peroxidation activity increases with gestation. Selenium (Se), as an essential constituent of glutathione peroxidase (GSH-Px), takes part in the reduction of hydrogen peroxides and lipid peroxides. Malondialdehyde (MDA) is a major breakdown product split off from lipid peroxides. In this study, Se and MDA content and GSH-Px activity were measured in blood and plasma taken from 20 apparently healthy nonpregnant women between 19 and 38 yr of age and from 115 unselected pregnant women between 17 and 45 yr of age (35 in the first trimester, 22 in the second trimester, 38 in the third trimester, and 20 within 2 d of delivery). Samples of umbilical cord blood and amniotic fluid were taken from women in the second and third trimesters and at delivery. The Se content was measured by atomic absorption spectrometry (AAS), plasma MDA concentration by thiobarbituric acid reaction, and Se-dependent GSH-Px spectrometrically. Blood and plasma Se contents of nonpregnant women were below those considered adequate, indicating low selenium intake. In comparison to nonpregnant women, pregnant women had significantly decreased whole-blood and plasma Se levels in the second and third trimesters and at delivery. The significant drop of whole-blood SeGSH-Px activity was observed in the first trimester of pregnancy and its lower activity was maintained until delivery. A significant drop in plasma SeGSH-Px activity occurred in the second trimester and attained the minimal level at delivery. The Se level and SeGSH-Px activity in maternal and umbilical cord blood were at similar levels. Amniotic-fluid SeGSH-Px activity was nondetectable or exceptionally low and its Se content remained unchanged during pregnancy. Plasma levels of MDA were significantly decreased in the second and third trimesters and at delivery. The fetal blood plasma at birth had a lower MDA level compared to the levels of MDA of their mothers at delivery. A low, but significant inverse correlation existed between blood SeGSH-Px activity and plasma MDA content and between plasma Se and plasma MDA contents during pregnancy. A significant decrease of Se and SeGSH-Px activities (antioxidant enzyme) in both blood and plasma suggests a possible drop in total antioxidant status during pregnancy. Elevated MDA plasma levels might be the result of increased lipid peroxidation in placental tissue during pregnancy.  相似文献   

8.
Intrauterine sensitization caused by food allergens plays an important role in the food allergy development in progeny. The aim of our study was to determine the critical period of intrauterine sensitization during pregnancy. Female mice were exposed to ovalbumin (OVA) during different trimesters of pregnancy. Lymphocytes from their offspring were isolated and cultured, and proliferation was evaluated by CCK-8 assay. The levels of IFN-γ and IL-4 in serum were measured using ELISA. In addition, the expressions of IFN-γ and IL-4 mRNAs and proteins were detected by real-time PCR and western blot. The mice were divided into the first trimester pregnancy (FTP1 and FTP2) group, the second trimester pregnancy (STP1 and STP2) group, and the third trimester pregnancy (TTP1 and TTP2) group based on the stages of pregnancy in which their mothers were exposed to OVA and their ages. The OVA-specific lymphocyte proliferation of the TTP1 group was statistically significantly greater that in the FTP1 and STP1 groups. The serum level of IFN-γ in the TTP1 group was significantly decreased, and the serum level of IL-4 in the TTP1 group was significantly increased compared with the levels in the FTP1 and STP1 groups. The mRNA and protein expression levels of IFN-γ in the TTP1 group were significantly decreased and the mRNA and protein expression levels of IL-4 in this group were significantly increased compared with the levels in the FTP1 and STP1 groups. Our results suggest that OVA-induced intrauterine sensitization in the third trimester may increase the risk of food allergy after birth.  相似文献   

9.
The development of metabolic complications of obesity has been associated with the existence of depot-specific differences in the biochemical properties of adipocytes. The aim of this study was to investigate, in severely obese men and women, both gender- and depot-related differences in lipoprotein lipase (LPL) expression and activity, as well as the involvement of endocrine and biometric factors and their dependence on gender and/or fat depot. Morbidly obese, nondiabetic, subjects (9 men and 22 women) aged 41.1+/-1.9 years, with a body mass index (BMI) of 54.7+/-1.7 kg/m(2) who had undergone abdominal surgery were studied. Both expression and activity of LPL and leptin expression were determined in adipose samples from subcutaneous and visceral fat depots. In both men and women, visceral fat showed higher LPL mRNA levels as well as lower ob mRNA levels and tissue leptin content than the subcutaneous one. In both subcutaneous and visceral adipose depots, women exhibited higher protein content, decreased fat cell size and lower LPL activity than men. The gender-related differences found in abdominal fat LPL activity could contribute to the increased risk for developing obesity-associated diseases shown by men, even in morbid obesity, in which the massive fat accumulation could mask these differences. Furthermore, the leptin content of fat depots as well as plasma insulin concentrations appear in our population as the main determinants of adipose tissue LPL activity, adjusted by gender, depot and BMI.  相似文献   

10.
The fetal demand for FFA increases as gestation proceeds, and LPL represents one potential mechanism for increasing placental lipid transport. We examined LPL activity and protein expression in first trimester and term human placenta. The LPL activity was 3-fold higher in term (n = 7; P < 0.05) compared with first trimester (n = 6) placentas. The LPL expression appeared lower in microvillous membrane from first trimester (n = 2) compared with term (n = 2) placentas. We incubated isolated placental villous fragments with a variety of effectors [GW 1929, estradiol, insulin, cortisol, epinephrine, insulin-like growth factor-1 (IGF-1), and tumor necrosis factor-alpha] for 1, 3, and 24 h to investigate potential regulatory mechanisms. Decreased LPL activity was observed after 24 h of incubation with estradiol (1 micro g/ml), insulin, cortisol, and IGF-1 (n = 12; P < 0.05). We observed an increase in LPL activity after 3 h of incubation with estradiol (20 ng/ml) or hyperglycemic medium plus insulin (n = 7; P < 0.05). To conclude, we suggest that the gestational increase in placental LPL activity represents an important mechanism to enhance placental FFA transport in late pregnancy. Hormonal regulation of placental LPL activity by insulin, cortisol, IGF-1, and estradiol may be involved in gestational changes and in alterations in LPL activity in pregnancies complicated by altered fetal growth.  相似文献   

11.
To determine if low dietary protein concentration in the first two trimesters of pregnancy alters placental development, genetically similar heifers from closed herd were fed diets containing different levels of protein in the first and second trimesters of gestation. There were four animals per treatment group, the groups being: L/L = fed a diet containing 7% crude protein (CP) (low protein) in the first and second trimesters; H/H = fed a diet containing 14% CP (high protein) in the first and second trimesters; L/H = fed low protein in the first trimester and high in the second trimester and vice versa for the H/L group. Low protein diets in the first trimester increased dry cotyledon weight at term. Trophectoderm' volume density increased in the H/L and L/H group compared to the L/L and H/H groups. Blood vessel volume and volume density in foetal villi decreased in the H/L and L/H groups compared with the H/H and L/L groups. There was no effect of diet treatment on cotyledon number, diameter or wet weight and no effect on the volume density of connective tissue or fibroblasts in the foetal villi. These results show that a low dietary protein concentration in the first trimester of pregnancy followed by increased protein in the second trimester enhanced placental development. Further, trophectoderm volume was highly correlated with birth weight. Early protein restriction in the pregnant cow may enhance foetal growth in part by stimulating placental growth and function.  相似文献   

12.
目的: 探讨脂肪酸结合蛋白5(FABP5)-过氧化物酶体增殖物激活受体γ(PPARγ)信号通路对血管性痴呆(VD)大鼠学习记忆及脂质代谢的影响及其作用机制。方法: ①采用双侧颈总动脉结扎法制备VD模型大鼠,设立正常对照组(WT组)、假手术组(sham组)及VD模型组;②设立WT组和WT+FABP5抑制剂组。4周后行Morris水迷宫实验检测大鼠空间学习记忆能力;采用RT-qPCR及Western blot方法测定脑内FABP5、PPARγ、p- PPARγ及脂蛋白脂肪酶(LPL)在转录水平和蛋白水平的表达;用试剂盒检测脑组织中总胆固醇(TC)、甘油三酯(TG)及游离脂肪酸(FFA)含量。结果: 与WT组和sham组相比,VD模型和FABP5抑制剂组大鼠学习记忆能力明显下降(P<0.05, P<0.01),脑内的FABP5、PPARγ、p- PPARγ及LPL在转录水平和蛋白水平上表达显著降低(P<0.05, P< 0.01);脑内的TC、TG和FFA含量明显提高(P<0.05, P<0.01)。结论: FABP5可通过PPARγ和LPL影响VD大鼠的学习记忆和脂质代谢。  相似文献   

13.

Background

FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile.

Objective

In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed.

Methods

The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot.

Results

In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group.

Conclusion

The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.  相似文献   

14.
In the placenta, 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) limits fetal glucocorticoid exposure and its inhibition has been associated to low birth weight. Its expression, encoded by the HSD11B2 gene is regulated by DNA methylation. We hypothesized that maternal diets supplemented with folic acid (FA) during pregnancy modify the expression of placental HSD11B2 through gene methylation. Wistar rats were fed with high (8 mg/kg) or normal low (1mg/kg, control) levels of FA during pregnancy. Concentrations of mRNA and protein in placentas were determined by qRT-PCR and Western blot respectively. Methylation in five CpG sites of the placental HSD11B2 promoter (−378 to −275) was analyzed by bacterial cloning and subsequent sequencing. In the FA-supplemented group, mRNA and protein levels of 11β-HSD2 decreased by 58% and increased by 89%, respectively, only in placentas attached to males. In controls, most CpG sites were not methylated except for the CpG2 site which was 80% methylated. CpG2 methylation level increased under the FA treatment; however, only in placentas attached to females was this increase significant (113%). This change was not related to HSD11B2 expression. Fetal weight of females from FA- supplemented mothers was 6% higher than females from control mothers. In conclusion, this is the first study reporting that FA over supplementation during pregnancy modifies the placental HSD11B2 gene expression and methylation in a sex-dependent manner, suggesting that maternal diets with high content of FA can induce early sex-specific responses, which may lead to long-term consequences for the offspring.  相似文献   

15.
Lipoprotein lipase (LPL) is the only known enzyme in the capillary endothelium of peripheral tissues that hydrolizes plasma triglycerides and provides fatty acids (FAs) for their subsequent tissue uptake. Previously, we demonstrated that mice that express LPL exclusively in muscle develop essentially normal fat mass despite the absence of LPL and the deprivation of nutritionally derived FAs in adipose tissue (AT). Using this mouse model, we now investigated the metabolic response to LPL deficiency in AT that enables maintenance of normal AT mass. We show that the rate of FA production was 1.8-fold higher in LPL-deficient AT than in control AT. The levels of mRNA and enzymatic activities of important enzymes involved in FA and triglyceride biosynthesis were induced concomitantly. Increased plasma glucose clearing and (14)C-deoxyglucose uptake into LPL-deficient mouse fat pads indicated that glucose provided the carbon source for lipid synthesis. Leptin expression was decreased in LPL-deficient AT. Finally, the induction of de novo FA synthesis in LPL-deficient AT was associated with increased expression and processing of sterol regulatory element binding protein 1 (SREBP-1), together with an increase in INSIG-1 expression. These results suggest that in the absence of LPL in AT, lipogenesis is activated through increased SREBP-1 expression and processing triggered by decreased availability of nutrition-derived FAs, elevated insulin, and low leptin levels.  相似文献   

16.
Mammalian cells require cholesterol as a structural component of plasma membranes. It is also required for placental steroid synthesis. De novo synthesis of cholesterol is limited in human placenta and cholesterol is obtained mainly from plasma low density lipoprotein (LDL). Cholesterol delivery from LDL is mediated by receptor-mediated uptake and the receptor amount is the most important factor for cellular delivery. Thus, the regulation of receptor synthesis is important for placental development and function. Since the regulation of LDL receptor gene expression has not been studied in human placenta, LDL receptor mRNA was measured in placentae of 5-40 weeks of gestation by hybridization of RNA with 32P-labeled cDNA for human LDL receptor. Two mRNA species for LDL receptor were demonstrated by Northern blot analysis. The longer mRNA [5.3 kilobases (kb)] was much more abundant than the shorter mRNA (3.7 kb). The amount of 5.3 kb mRNA was highest early in gestation and decreased during pregnancy. However, the amount of 3.7 kb mRNA did not change appreciably during gestation. Dot blot analysis of 26 placental mRNAs obtained from various stages of gestation revealed a negative correlation between LDL receptor mRNA and gestation (r = -0.76, P less than 0.001). Considering the rapid growth of the trophoblast during gestation, especially in the first and the second trimester, increased expression of the LDL receptor gene and subsequent translation are expected for efficient cholesterol uptake to provide a sufficient substrate for cell growth. Possible mechanisms for the appearance of two mRNA species for LDL receptor are also discussed.  相似文献   

17.
Maternal diabetes can cause fetal macrosomia and increased risk of obesity, diabetes, and cardiovascular disease in adulthood of the offspring. Although increased transplacental lipid transport could be involved, the impact of maternal type 1 diabetes on molecular mechanisms for lipid transport in placenta is largely unknown. To examine whether maternal type 1 diabetes affects placental lipid metabolism, we measured lipids and mRNA expression of lipase-encoding genes in placentas from women with type 1 diabetes (n = 27) and a control group (n = 21). The placental triglyceride (TG) concentration and mRNA expression of endothelial lipase (EL) and hormone-sensitive lipase (HSL) were increased in placentas from women with diabetes. The differences were more pronounced in women with diabetes and suboptimal metabolic control than in women with diabetes and good metabolic control. Placental mRNA expression of lipoprotein lipase and lysosomal lipase were similar in women with diabetes and the control group. Immunohistochemistry showed EL protein in syncytiotrophoblasts facing the maternal blood and endothelial cells facing the fetal blood in placentas from both normal women and women with diabetes. These results suggest that maternal type 1 diabetes is associated with TG accumulation and increased EL and HSL gene expression in placenta and that optimal metabolic control reduces these effects.  相似文献   

18.
Throughout the second and third trimesters, the human placenta (and the placenta in other anthropoid primates) produces substantial quantities of corticotropin-releasing hormone (placental CRH), most of which is secreted into the maternal bloodstream. During pregnancy, CRH concentrations rise over 1000-fold. The advantages that led selection to favour placental CRH production and secretion are not yet fully understood. Placental CRH stimulates the production of maternal adrenocorticotropin hormone (ACTH) and cortisol, leading to substantial increases in maternal serum cortisol levels during the third trimester. These effects are puzzling in light of widespread theory that cortisol has harmful effects on the fetus. The maternal hypothalamic-pituitary-adrenal (HPA) axis becomes less sensitive to cortisol during pregnancy, purportedly to protect the fetus from cortisol exposure. Researchers, then, have often looked for beneficial effects of placental CRH that involve receptors outside the HPA system, such as the uterine myometrium (e.g. the placental clock hypothesis). An alternative view is proposed here: the beneficial effect of placental CRH to the fetus lies in the fact that it does stimulate the production of cortisol, which, in turn, leads to greater concentrations of glucose in the maternal bloodstream available for fetal consumption. In this view, maternal HPA insensitivity to placental CRH likely reflects counter-adaptation, as the optimal rate of cortisol production for the fetus exceeds that for the mother. Evidence pertaining to this proposal is reviewed.  相似文献   

19.
Omentin-1 and fatty acid-binding protein 4 (FABP4) are adipose tissue adipokines linked to obesity-associated cardiovascular complications. The aim of this study was to investigate epicardial adipose tissue (EAT) omentin-1 and FABP4 gene expression in obese and non-obese patients with coronary artery disease (CAD). Omentin-1 and FABP4 mRNA levels in EAT and paired subcutaneous adipose tissue (SAT) as well as adipokine serum concentrations were assessed in 77 individuals (61 with CAD; 16 without CAD (NCAD)). EAT FABP4 mRNA level was decreased in obese CAD patients when compared to obese NCAD individuals (p=0.001). SAT FABP4 mRNA level was decreased in CAD patients compared to NCAD individuals without respect to their obesity status (p=0.001). Omentin-1 mRNA level in EAT and SAT did not differ between the CAD and NCAD groups. These findings suggest that omentin-1 gene expression in adipose tissue is not changed during CAD; downregulated FABP4 gene expression in SAT is associated with CAD while EAT FABP4 gene expression is decreased only in obesity-related CAD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号