首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenosine, a neuromodulator of the CNS, activates inhibitory-A1 receptors and facilitatory-A2A receptors; its synaptic levels are controlled by the activity of bi-directional equilibrative nucleoside transporters. To study the relationship between the extracellular formation/inactivation of adenosine and the activation of adenosine receptors, we investigated how A1 and A2A receptor activation modifies adenosine transport in hippocampal synaptosomes. The A2A receptor agonist, CGS 21680 (30 nm), facilitated adenosine uptake through a PKC-dependent mechanism, but A1 receptor activation had no effect. CGS 21680 (30 nm) also increased depolarization-induced release of adenosine. Both effects were prevented by A2A receptor blockade. A2A receptor-mediated enhancement of adenosine transport system is important for formatting adenosine neuromodulation according to the stimulation frequency, as: (1) A1 receptor antagonist, DPCPX (250 nm), facilitated the evoked release of [(3)H]acetylcholine under low-frequency stimulation (2 Hz) from CA3 hippocampal slices, but had no effect under high-frequency stimulation (50 Hz); (2) either nucleoside transporter or A2A receptor blockade revealed the facilitatory effect of DPCPX (250 nm) on [3H]acetylcholine evoked-release triggered by high-frequency stimulation. These results indicate that A2A receptor activation facilitates the activity of nucleoside transporters, which have a preponderant role in modulating the extracellular adenosine levels available to activate A1 receptors.  相似文献   

2.
The purpose of this study was to characterize the role of adenosine-dependent regulation of anion secretion in Calu-3 cells. RT-PCR studies showed that Calu-3 cells expressed mRNA for A2A and A2B but not A1 or A3 receptors, and for hENT1, hENT2 and hCNT3 but not hCNT1 or hCNT2 nucleoside transporters. Short-circuit current measurements indicated that A2B receptors were present in both apical and basolateral membranes, whereas A2A receptors were detected only in basolateral membranes. Uptake studies demonstrated that the majority of adenosine transport was mediated by hENT1, which was localized to both apical and basolateral membranes, with a smaller hENT2-mediated component in basolateral membranes. Whole-cell current measurements showed that application of extracellular nitrobenzylmercaptopurine ribonucleoside (NBMPR), a selective inhibitor of hENT1-mediated transport, had similar effects on whole-cell currents as the application of exogenous adenosine. Inhibitors of adenosine kinase and 5'-nucleotidase increased and decreased, respectively, whole-cell currents, whereas inhibition of adenosine deaminase had no effect. Single-channel studies showed that NBMPR and adenosine kinase inhibitors activated CFTR Cl- channels. These results suggested that the equilibrative nucleoside transporters (hENT1, hENT2) together with adenosine kinase and 5'-nucleotidase play a crucial role in the regulation of CFTR through an adenosine-dependent pathway in human airway epithelia.  相似文献   

3.
In diabetic retinopathy (DR), abnormalities in vascular and neuronal function are closely related to the local production of inflammatory mediators whose potential source is microglia. Adenosine and its receptors have been shown to possess anti-inflammatory properties that have only recently been studied in DR. Here, we review recent studies that determined the roles of adenosine and its associated proteins, including equilibrative nucleoside transporters, adenosine receptors, and underlying signaling pathways in retinal complications associated with diabetes.  相似文献   

4.
Nucleoside transporters (NT) facilitate the movement of nucleosides and nucleobases across cell membranes. NT-mediated transport is vital for the synthesis of nucleic acids in cells that lack de novo purine synthesis. Some nucleosides display biological activity and act as signalling molecules. For example, adenosine exerts a potent action on many physiological processes including vasodilatation, hormone and neurotransmitter release, platelet aggregation, and lipolysis. Therefore, carrier-mediated transport of this nucleoside plays an important role in modulating cell function, because the efficiency of the transport processes determines adenosine availability to its receptors or to metabolizing enzymes. Nucleoside transporters are also key elements in anticancer and antiviral therapy with the use of nucleoside analogues. Mammalian cells possess two major nucleoside transporter families: equilibrative (ENT) and concentrative (CNT) Na(+)-dependent ones. This review characterizes gene loci, substrate specificity, tissue distribution, membrane topology and structure of ENT and CNT proteins. Regulation of nucleoside transporters by various factors is also presented.  相似文献   

5.
Activation of rapid motility apparently is one of the first steps of sperm capacitation and can be studied in vitro. Previously we found that 2-chloro-2'-deoxyadenosine or the catecholamine isoproterenol activates mouse sperm motility in vitro via a pathway mediated by cAMP that requires extracellular Ca2+, the atypical sperm adenylyl cyclase, and sperm-specific protein kinase A. We now show that several other adenosine analogs and catecholamines accelerate the flagellar beat of mouse and human sperm. Unexpectedly, the potent adenosine receptor agonist CGS21680 does not accelerate the beat, and the adenosine receptor antagonist DPCPX does not diminish the accelerating action of 2-chloro-2'-deoxyadenosine. The pharmacological profile for activation by catecholamines is also unusual. Both agonists and antagonists of beta-adrenergic receptors elevate the beat frequency. Moreover, both l-(-) and d-+ isomers of epinephrine, norepinephrine, and isoproterenol produce similar acceleration of the beat. In contrast, inhibitors of equilibrative nucleoside transporters effectively slow the onset of the accelerating action of adenosine analogs. Replacement of external Na+ with Li+ also diminishes the accumulation of cAMP and slows the resultant accelerating action of 2-chloro-2'-deoxyadenosine, suggesting the involvement of a Na+-dependent concentrative nucleoside transporter. Our results show that adenosine and catecholamine agonists act in a novel signaling pathway that does not involve G protein-coupled cell-surface receptors that link to conventional adenylyl cyclases. Instead, adenosine and analogs may be transported into sperm via equilibrative and concentrative nucleoside transporters to act on unknown intracellular targets.  相似文献   

6.
Adenosine, through activation of membrane-bound receptors, has been reported to have neuroprotective properties during strokes or seizures. The role of astrocytes in regulating brain interstitial adenosine levels has not been clearly defined. We have determined the nucleoside transporters present in rat C6 glioma cells. RT-PCR analysis, (3)H-nucleoside uptake experiments, and [(3)H]nitrobenzylthioinosine ([(3)H]NBMPR) binding assays indicated that the primary functional nucleoside transporter in C6 cells was rENT2, an equilibrative nucleoside transporter (ENT) that is relatively insensitive to inhibition by NBMPR. [(3)H]Formycin B, a poorly metabolized nucleoside analogue, was used to investigate nucleoside release processes, and rENT2 transporters mediated [(3)H]formycin B release from these cells. Adenosine release was investigated by first loading cells with [(3)H]adenine to label adenine nucleotide pools. Tritium release was initiated by inhibiting glycolytic and oxidative ATP generation and thus depleting ATP levels. Our results indicate that during ATP-depleting conditions, AMP catabolism progressed via the reactions AMP --> IMP --> inosine --> hypoxanthine, which accounted for >90% of the evoked tritium release. It was surprising that adenosine was not released during ATP-depleting conditions unless AMP deaminase and adenosine deaminase were inhibited. Inosine release was enhanced by inhibition of purine nucleoside phosphorylase; ENT2 transporters mediated the release of adenosine or inosine. However, inhibition of AMP deaminase/adenosine deaminase or purine nucleoside phosphorylase during ATP depletion produced release of adenosine or inosine, respectively, via the rENT2 transporter. This indicates that C6 glioma cells possess primarily rENT2 nucleoside transporters that function in adenosine uptake but that intracellular metabolism prevents the release of adenosine from these cells even during ATP-depleting conditions.  相似文献   

7.
Adenosine receptor expression and function in bladder uroepithelium   总被引:2,自引:0,他引:2  
The uroepithelium of the bladder forms an impermeable barrier that is maintained in part by regulated membrane turnover in the outermost umbrella cell layer. Other than bladder filling, few physiological regulators of this process are known. Western blot analysis established that all four adenosine receptors (A1, A2a, A2b, and A3) are expressed in the uroepithelium. A1 receptors were prominently localized to the apical membrane of the umbrella cell layer, whereas A2a, A2b, and A3 receptors were localized intracellularly or on the basolateral membrane of umbrella cells and the plasma membrane of the underlying cell layers. Adenosine was released from the uroepithelium, which was potentiated 10-fold by stretching the tissue. Administration of adenosine to the serosal or mucosal surface of the uroepithelium led to increases in membrane capacitance (where 1 µF 1 cm2 tissue area) of 30% or 24%, respectively, after 5 h. Although A1, A2a, and A3 selective agonists all stimulated membrane capacitance after being administrated serosally, only the A1 agonist caused large increases in capacitance after being administered mucosally. Adenosine receptor antagonists as well as adenosine deaminase had no effect on stretch-induced capacitance increases, but adenosine potentiated the effects of stretch. Treatment with U-73122, 2-aminoethoxydiphenylborate, or xestospongin C or incubation in calcium-free Krebs solution inhibited adenosine-induced increases in capacitance. These data indicate that the uroepithelium is a site of adenosine biosynthesis, that adenosine receptors are expressed in the uroepithelium, and that one function of these receptors may be to modulate exocytosis in umbrella cells. capacitance; exocytosis  相似文献   

8.
Adenosine, as a ubiquitous metabolite, mediates many physiological functions via activation of plasma membrane receptors. Mechanisms of most of its physiological roles have been studied extensively, but research on adenosine-induced apoptosis (AIA) has only started recently. In this study we demonstrate that adenosine dose-dependently triggered apoptosis of cultured baby hamster kidney (BHK) cells. Adenosine-induced apoptotic cell death was characterized by DNA laddering, changes in nuclear chromatin morphology and phosphatidylserine staining. Apoptosis was also quantified by flow cytometry. Results suggest the involvement of adenosine A1 and A3 receptors as well as equilibrative nucleoside transporters in apoptosis induced by adenosine. These results indicate a receptor-transporter co-signaling mechanism in AIA in BHK cells. The involvement of A1 and A3 receptors also implies a possible apoptotic pathway mediated by G protein-coupled receptors.  相似文献   

9.
Sodium-dependent nucleoside transport in mouse leukemia L1210 cells   总被引:1,自引:0,他引:1  
Nucleoside permeation in L1210/AM cells is mediated by (a) equilibrative (facilitated diffusion) transporters of two types and by (b) a concentrative Na(+)-dependent transport system of low sensitivity to nitrobenzylthioinosine and dipyridamole, classical inhibitors of equilibrative nucleoside transport. In medium containing 10 microM dipyridamole and 20 microM adenosine, the equilibrative nucleoside transport systems of L1210/AM cells were substantially inhibited and the unimpaired activity of the Na(+)-dependent nucleoside transport system resulted in the cellular accumulation of free adenosine to 86 microM in 5 min, a concentration three times greater than the steady-state levels of adenosine achieved without dipyridamole. Uphill adenosine transport was not observed when extracellular Na+ was replaced by Li+, K+, Cs+, or N-methyl-D-glucammonium ions, or after treatment of the cells with nystatin, a Na+ ionophore. These findings show that concentrative nucleoside transport activity in L1210/AM cells required an inward transmembrane Na+ gradient. Treatment of cells in sodium medium with 2 mM furosemide in the absence or presence of 2 mM ouabain inhibited Na(+)-dependent adenosine transport by 50 and 75%, respectively. However, because treatment of cells with either agent in Na(+)-free medium decreased adenosine transport by only 25%, part of this inhibition may be secondary to the effects of furosemide and ouabain on the ionic content of the cells. Substitution of extracellular Cl- by SO4(-2) or SCN- had no effect on the concentrative influx of adenosine.  相似文献   

10.
Gestational diabetes mellitus (GDM) is a disease of pregnancy associated with maternal and foetal hyperglycaemia and altered foetoplacental vascular function. Human foetoplacental microvascular and macrovascular endothelium from GDM pregnancy show increased maximal l-arginine transport capacity via the human cationic amino acid transporter 1 (hCAT-1) isoform and nitric oxide (NO) synthesis by the endothelial NO synthase (eNOS). These alterations are paralleled by lower maximal transport activity of the endogenous nucleoside adenosine via the human equilibrative nucleoside transporter 1 (hENT1) and activation of adenosine receptors. A causal relationship has been described for adenosine-activation of A2A adenosine receptors, hCAT-1, and eNOS activity (i.e. the Adenosine/l-Arginine/Nitric Oxide, ALANO, signalling pathway). Insulin restores these alterations in GDM via activation of insulin receptor A (IR-A) form in the macrovascular but IR-A and IR-B forms in the microcirculation of the human placenta. Adipokines are secreted from adipocytes influencing the foetoplacental metabolic and vascular function. Various adipokines are dysregulated in GDM, with adiponectin and leptin playing major roles. Abnormal plasma concentration of these adipokines and the activation or their receptors are involved in the pathophysiology of GDM. However, involvement of adipokines, adenosine, and insulin receptors and membrane transporters in the aetiology of this disease of pregnancy is unknown. This review focuses on the pathophysiology of insulin and adenosine receptors and l-arginine and adenosine membranes transporters giving an overview of the key adipokines leptin and adiponectin in the foetoplacental vasculature in GDM. This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy Metabolic Complications edited by Luis Sobrevia.  相似文献   

11.
Stimulation of adenosine A1 receptors in the heart exerts cardioprotective effects by inhibiting norepinephrine (NE) release from sympathetic nerve endings. The intraneuronal signal transduction triggered by presynaptic adenosine A1 receptors is still not completely understood. The objective of the present study was to determine whether phospholipase C (PLC), protein kinase C (PKC), and adenylyl cyclase (AC) are involved in the adenosine A1 receptor-mediated inhibition of endogenous (stimulation-induced) NE release in isolated Langendorff-perfused rat hearts as an approach to elucidate their role in the cardiovascular system. Activation of adenosine A1-receptors with 2-chloro-N6-cyclopentyladenosine (CCPA) decreased cardiac NE release by approximately 40%. Inhibition of PLC with 1-[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U 73122) as well as inhibition of PKC with 2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl)maleimide (GF 109203X) slightly but significantly decreased NE release; however, the suppressive effect of CCPA on NE release was not modulated by U 73122 or GF 109203X. Blockade of AC with 9-(tetrahydro-2'-furyl)adenine (SQ 22536) reversed the inhibitory effect of CCPA on sympathetic neurotransmitter release irrespective of whether PKC was pharmacologically activated by phorbol 12-myristate 13-acetate or was not activated, indicating a PKC-independent but AC-dependent mechanism. Direct stimulation of AC with forskolin increased NE release by approximately 20%; an effect that was antagonized by either CCPA or SQ 22536. These data suggest that the adenosine A1 receptor-mediated inhibition of NE release does not involve PLC or PKC but does involve AC.  相似文献   

12.
Adenosine plays an important role in physiology of several organs. Its turnover inside and outside of the cell is controlled by several enzymes and transport processes. The action of extracellular adenosine is mediated via at least four receptors named A(1), A(2A), A(2B), and A(3). Recent studies have reported that adenosine is a significant mediator of regulatory lymphocyte function. Numerous data indicates that adenosine affects T lymphocyte activation, proliferation and lymphocyte-mediated cytolysis. Impaired lymphocyte functioning and enhanced susceptibility to infections is a common feature of human diabetes. This review collects data bringing us closer to understanding the disturbances in lymphocytes adenosine homeostasis in diabetes. Adenosine receptors and nucleoside transporters are targets for potential drugs in many pathophysiological situations. Therefore, action of adenosine on lymphocyte function in diabetes may be important target for modulation of immune responses and understanding of mechanisms leading to several pathologies of immune cells observed in diabetes.  相似文献   

13.
The purine nucleoside adenosine is a physiologically important molecule in the heart. Brief exposure of cardiomyocytes to hypoxic challenge results in the production of extracellular adenosine, which then interacts with adenosine receptors to activate compensatory signaling pathways that lead to cellular resistance to subsequence hypoxic challenge. This phenomenon is known as preconditioning (PC), and, while adenosine is clearly involved, other components of the response are less well understood. Flux of nucleosides, such as adenosine and inosine, across cardiomyocyte membranes is dependent on equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2). We have previously shown in the murine cardiomyocyte HL-1 cell line that hypoxic challenge leads to an increase in intracellular adenosine, which exits the cell via ENT1 and preconditions via A1 and A3 adenosine receptor-dependent mechanisms. However, the role and contribution of inosine and ENT2 are unclear. In this study, we confirmed that ENT1 and ENT2 are both capable of transporting inosine. Moreover, we found that hypoxic challenge leads to a significant increase in levels of intracellular inosine, which exits the cell via both ENT1 and ENT2. Exogenously added inosine (5 microM) preconditions cardiomyocytes in an A1 adenosine receptor-dependent manner since preconditioning can be blocked by the A1 adenosine receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (1 microM) but not the A3 adenosine receptor antagonist MRS-1220 (200 nM). These data suggest that cardiomyocyte responses to hypoxic PC are more complex than previously thought, involving both adenosine and inosine and differing, but overlapping, contributions of the two ENT isoforms.  相似文献   

14.
Activation of adenosine receptors in the brain reduces anxiety-like behavior in animals and humans. Because nucleoside transporters regulate adenosine levels, we used mice lacking the type 1 equilibrative nucleoside transporter (ENT1) to investigate whether ENT1 contributes to anxiety-like behavior. The ENT1 null mice spent more time in the center of an open field compared with wild-type littermates. In the elevated plus maze, ENT1 null mice entered more frequently into and spent more time exploring the open arms. The ENT1 null mice also spent more time exploring the light side of a light-dark box compared with wild-type mice. Microinjection of an ENT1-specific antagonist, nitrobenzylthioinosine (nitrobenzylmercaptopurine riboside), into the amygdala of C57BL/6J mice reduced anxiety-like behavior in the open field and elevated plus maze. These findings show that amygdala ENT1 modulates anxiety-like behavior. The ENT1 may be a drug target for the treatment of anxiety disorders.  相似文献   

15.
Leishmania donovani express two members of the equilibrative nucleoside transporter family; LdNT1 encoded by two closely related and linked genes, LdNT1.1 and LdNT1.2, that transport adenosine and pyrimidine nucleosides and LdNT2 that transports inosine and guanosine exclusively. LdNT1.1, LdNT1.2, and LdNT2 have been expressed in Xenopus laevis oocytes and found to be electrogenic in the presence of nucleoside ligands for which they mediate transport. Further analysis revealed that ligand uptake and transport currents through LdNT1-type transporters are proton-dependent. In addition to the flux of protons that is coupled to the transport reaction, LdNT1 transporters mediate a variable constitutive proton conductance that is blocked by substrates and dipyridamole. Surprisingly, LdNT1.1 and LdNT1.2 exhibit different electrogenic properties, despite their close sequence homology. This electrophysiological study provides the first demonstration that members of the equilibrative nucleoside transporter family can be electrogenic and establishes that these three permeases, unlike their mammalian counterparts, are probably concentrative rather than facilitative transporters.  相似文献   

16.
We postulated that increased levels of hypoxanthine, a main characteristic of hypoxanthine phosphoribosyltransferase (HPRT) deficiency, may influence adenosine function which could be related to some of the neurological features of the Lesch-Nyhan syndrome. We have examined the effect of hypoxanthine on different adenosine transporters in peripheral blood lymphocytes from control subjects. Increased hypoxanthine concentrations (25 microM) significantly decreased adenosine transport. The equilibrative adenosine transporters (79.6% of the adenosine transport), both NBTI sensitive and NBTI insensitive, were affected significantly. In contrast, the concentrative adenosine transporters were not influenced by hypoxanthine. These results supports the hypothesis that increased hypoxanthine levels influence equilibrative (predominantly NBTI-insensitive type) adenosine transporters.  相似文献   

17.
We postulated that increased levels of hypoxanthine, a main characteristic of hypoxanthine phosphoribosyltransferase (HPRT) deficiency, may influence adenosine function which could be related to some of the neurological features of the Lesch-Nyhan syndrome. We have examined the effect of hypoxanthine on different adenosine transporters in peripheral blood lymphocytes from control subjects. Increased hypoxanthine concentrations (25 μM) significantly decreased adenosine transport. The equilibrative adenosine transporters (79.6% of the adenosine transport), both NBTI sensitive and NBTI insensitive, were affected significantly. In contrast, the concentrative adenosine transporters were not influenced by hypoxanthine. These results supports the hypothesis that increased hypoxanthine levels influence equilibrative (predominantly NBTI-insensitive type) adenosine transporters.  相似文献   

18.
We stably transfected the cloned human equilibrative nucleoside transporters 1 and 2 (hENT1 and hENT2) into nucleoside transporter-deficient PK15NTD cells. Although hENT1 and hENT2 are predicted to be 50-kDa proteins, hENT1 runs as 40 kDa and hENT2 migrates as 50 and 47 kDa on SDS-polyacrylamide gel electrophoresis. Peptide N-glycosidase F and endoglycosidase H deglycosylate hENT1 to 37 kDa and hENT2 to 45 kDa. With hENT1 being more sensitive, there is a 7000-fold and 71-fold difference in sensitivity to nitrobenzylthioinosine (NBMPR) (IC(50), 0.4 +/- 0.1 nM versus 2.8 +/- 0.3 microM) and dipyridamole (IC(50), 5.0 +/- 0.9 nM versus 356 +/- 13 nM), respectively. [(3)H]NBMPR binds to ENT1 cells with a high affinity K(d) of 0.377 +/- 0.098 nM, and each ENT1 cell has 34,000 transporters with a turnover number of 46 molecules/s for uridine. Although both transporters are broadly selective, hENT2 is a generally low affinity nucleoside transporter with 2.6-, 2.8-, 7. 7-, and 19.3-fold lower affinity than hENT1 for thymidine, adenosine, cytidine, and guanosine, respectively. In contrast, the affinity of hENT2 for inosine is 4-fold higher than hENT1. The nucleobase hypoxanthine inhibits [(3)H]uridine uptake by hENT2 but has minimal effect on hENT1. Taken together, these results suggest that hENT2 might be important in transporting adenosine and its metabolites (inosine and hypoxanthine) in tissues such as skeletal muscle where ENT2 is predominantly expressed.  相似文献   

19.
Adenosine is an important modulator of neuronal survival and differentiation in the CNS. Our previous work showed that nucleoside transporters (NTs) are present in cultures of chick retinal cells, but little is known about the mechanisms regulating adenosine transport in these cultures. Our aim in the present work was to study the participation of the adenosine metabolism as well as the ERK pathway on adenosine uptake in different types of retinal cultures (mixed and purified glial cultures). Kinetic analysis in both cultures revealed that the uptake reached equilibrium after 30 min and presented two components. Incubation of cultures with S-(p-nitrobenzyl)-6-thioinosine (NBTI) or dipyridamole, different inhibitors of equilibrative nucleoside transporters (ENTs), produced a significant and concentration-dependent uptake reduction in both cultures. However, while dipyridamole presented similar maximal inhibitory effects in both cultures (although in different concentrations), the inhibition by NBTI was smaller in glial cultures than in mixed cultures, suggesting the presence of different transporters. Moreover, pre-incubation of [3H]-adenosine with adenosine deaminase (ADA) or adenosine kinase (ADK) inhibition with iodotubercidin promoted significant uptake inhibition in both cultures, indicating that the uptake is predominantly for adenosine and not inosine, and that taken up adenosine is preferentially directed to the synthesis of adenine nucleotides. In both cultures, the MEK inhibitors PD98059 or UO126, but not the inactive analog U0124, induced a significant and concentration-dependent uptake decrease. We have not observed any change in adenosine metabolism induced by MEK inhibitors, suggesting that this pathway is mediating a direct effect on NTs. Our results show the expression of different NTs in retinal cells in culture and that the activity of these transporters can be regulated by the ERK pathway or metabolic enzymes such as ADK which are then potential targets for regulation of Ado levels in normal or pathological conditions.  相似文献   

20.
Adenosine is formed during conditions that deplete ATP, such as ischemia. Adenosine deaminase converts adenosine into inosine, and both adenosine and inosine can be beneficial for postischemic recovery. This study investigated adenosine and inosine release from astrocytes and neurons during chemical hypoxia or oxygen-glucose deprivation. In both cell types, 2-deoxyglucose was the most effective stimulus for depleting cellular ATP and for evoking inosine release; in contrast, oxygen-glucose deprivation evoked the greatest adenosine release. alpha,beta-Methylene ADP, an inhibitor of ecto-5'nucleotidase, significantly reduced adenosine release from astrocytes but not neurons. Dipyridamole, an inhibitor of equilibrative nucleoside transporters, inhibited both adenosine and inosine release from neurons. Erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase, reduced neuronal inosine release evoked by oxygen-glucose deprivation but not by 2-deoxyglucose treatment. These data indicate that (1). astrocytes release adenine nucleotides that are hydrolyzed extracellularly to adenosine, whereas neurons release adenosine per se, (2). inosine is formed intracellularly and released via nucleoside transporters, and (3). inosine is formed by an adenosine deaminase-dependent pathway during oxygen-glucose deprivation but not during 2-deoxyglucose treatment. In summary, the metabolic pathways for adenosine formation and release were cell-type dependent whereas the pathways for inosine formation were stimulus dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号