首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
Ubiquitous protein kinase CK2 is a key regulator of cell migration, proliferation and tumor growth. CK2 is abundant in retinal astrocytes, and its inhibition suppresses retinal neovascularization in a mouse retinopathy model. In human astrocytes, CK2 co-distributes with GFAP-containing intermediate filaments, which implies its association with cytoskeleton. Contrary to astrocytes, CK2 is co-localized in microvascular endothelial cells (HBMVEC) with microtubules and actin stress fibers, but not with vimentin-containing intermediate filaments. Specific CK2 inhibitors (TBB, TBI, TBCA and DMAT) and nine novel CK2 inhibiting compounds (TID43, TID46, Quinolone-7, Quinolone-39, FNH28, FNH62, FNH64, FNH68 and FNH74) were tested at 10-200 μM for their ability to induce morphological alterations in cultured human astrocytes (HAST-40), and HBMVEC (For explanation of the inhibitor names, see "Methods" section). CK2 inhibitors caused dramatic changes in shape of cultured cells with effective inhibitor concentrations between 50 and 100 μM. Attached cells retracted, acquired shortened processes, and eventually rounded up and detached. CK2 inhibitor-induced morphological alterations were completely reversible and were not blocked by caspase inhibition. However, longer treatment or higher inhibitor concentration did cause apoptosis. The speed and potency of the CK2 inhibitors effects on cell shape and adhesion were inversely correlated with serum concentration. Western analyses showed that TBB and TBCA elicited a significant (about twofold) increase in the activation of p38 and ERK1/2 MAP kinases that may be involved in cytoskeleton regulation. This novel early biological cell response to CK2 inhibition may underlie the anti-angiogenic effect of CK2 suppression in the retina.  相似文献   

2.
A class of drugs successfully used for treatment of metabolic bone diseases is the nitrogen-containing bisphosphonates (N-BPs), which act by inhibiting the vital enzyme, farnesyl pyrophosphate synthase (FPPS), of the mevalonate pathway. Inhibition of FPPS by N-BPs results in the intracellular accumulation of isopentenyl pyrophosphate (IPP) and consequently induces the biosynthesis of a cytotoxic ATP analog (ApppI). Previous cell-free data has reported that N-BPs inhibit FPPS by time-dependent manner as a result of the conformational change. This associated conformational change can be measured as an isomerization constant (Kisom) and reflects the binding differences of the N-BPs to FPPS. In the present study, we tested the biological relevance of the calculated Kisom values of zoledronic acid, risedronate and five experimental N-BP analogs in the cell culture model. We used IPP/ApppI formation as a surrogate marker for blocking of FPPS in the mevalonate pathway.As a result, a correlation between the time-dependent inhibition of FPPS and IPP/ApppI formation by N-BPs was observed. This outcome indicates that the time-dependent inhibition of FPPS enzyme is a biologically significant mechanism and further supports the use of the Kisom calculations for evaluation of the overall potency of the novel FPPS inhibitors. Additionally, data illustrates that IPP/ApppI analysis is a useful method to monitor the intracellular action of drugs and drug candidates based on FPPS inhibition.  相似文献   

3.
Soluble proteins reach vacuoles because they contain vacuolar sorting determinants (VSDs) that are recognized by vacuolar sorting receptor (VSR) proteins. Pre-vacuolar compartments (PVCs), defined by VSRs and GFP-VSR reporters in tobacco BY-2 cells, are membrane-bound intermediate organelles that mediate protein traffic from the Golgi apparatus to the vacuole in plant cells. Multiple pathways have been demonstrated to be responsible for vacuolar transport of lytic enzymes and storage proteins to the lytic vacuole (LV) and the protein storage vacuole (PSV), respectively. However, the nature of PVCs for LV and PSV pathways remains unclear. Here, we used two fluorescent reporters, aleurain-GFP and 2S albumin-GFP, that represent traffic of lytic enzymes and storage proteins to LV and PSV, respectively, to study the PVC-mediated transport pathways via transient expression in suspension cultured cells. We demonstrated that the vacuolar transport of aleurain-GFP and 2S albumin-GFP was mediated by the same PVC populations in both tobacco BY-2 and Arabidopsis suspension cultured cells. These PVCs were defined by the seven GFP-AtVSR reporters. In wortmannin-treated cells, the vacuolated PVCs contained the mRFP-AtVSR reporter in their limiting membranes, whereas the soluble aleurain-GFP or 2S albumin-GFP remained in the lumen of the PVCs, indicating a possible in vivo relationship between receptor and cargo within PVCs.  相似文献   

4.
Natural flavonoids are associated with anti-proliferation of cancer growth. However, the antioxidant and anti-proliferation effects of AE (aloe-emodin) have not been well studied. We have investigated how AE affects the proliferation of hepatic hepatocellular carcinoma cells and exerts an anti-cancer effect. The cytotoxic effect of AE was demonstrated using an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay and Huh-7 cells were inhibited by AE treatment in both dose- and time-dependent manners. The IC(50) level of AE was ~75 μM. AE also has anti-proliferative effects via induction of DNA damage and apoptosis. 2-DE (two-dimensional electrophoresis) revealed that several proteins were related to the anti-cancer effects of AE. CAPN2 (calpain-2) and UBE3A (ubiquitin-protein ligase E3A), which are associated with the apoptosis signalling pathway, were verified by Western blotting. AE exhibited potent anti-proliferative effects on Huh-7 cells via down-regulation of CAPN2 and UBE3A. The findings support the possibility of AE being a chemopreventative agent.  相似文献   

5.
Vascular dysfunction is emerging as a key pathological hallmark in Alzheimer’s disease (AD). A leaky blood–brain barrier (BBB) has been described in AD patient tissue and in vivo AD mouse models. Brain endothelial cells (BECs) are linked together by tight junctional (TJ) proteins, which are a key determinant in restricting the permeability of the BBB. The amyloid β (Aβ) peptides of 1–40 and 1–42 amino acids are believed to be pivotal in AD pathogenesis. We therefore decided to investigate the effect of Aβ 1–40, the Aβ variant found at the highest concentration in human plasma, on the permeability of an immortalized human BEC line, hCMEC/D3. Aβ 1–40 induced a marked increase in hCMEC/D3 cell permeability to the paracellular tracer 70 kD FITC‐dextran when compared with cells incubated with the scrambled Aβ 1–40 peptide. Increased permeability was associated with a specific decrease, both at the protein and mRNA level, in the TJ protein occludin, whereas claudin‐5 and ZO‐1 were unaffected. JNK and p38MAPK inhibition prevented both Aβ 1–40‐mediated down‐regulation of occludin and the increase in paracellular permeability in hCMEC/D3 cells. Our findings suggest that the JNK and p38MAPK pathways might represent attractive therapeutic targets for preventing BBB dysfunction in AD.  相似文献   

6.
Nitric oxide (NO) from astrocytes is one of the signalers used by the brain's extensive glial-neuronal-vascular network, but its excessive production by pro-inflammatory cytokine-stimulated glial cells can be cytodestructive. Here, we show how three pro-inflammatory cytokines (IL-1beta, TNF-alpha, and IFN-gamma) together stimulated the activation, but not the prior expression, of NOS-2 protein via a mechanism involving MEK-ERKs protein kinases in astrocytes from adult human cerebral temporal cortex. The cytokines triggered a transient burst of p38 MAPK activity and the production of NOS-2 mRNA which were followed by bursts of MEK-ERK activities, synthesis of the NOS-2 co-factor tetrahydrobiopterin (BH(4)), a build-up of NOS-2 protein and from it active NOS-2 enzyme. Selectively inhibiting MEK1/MEK2, but not the earlier burst of p38 MAPK activity, with a brief exposure to U0126 between 24 and 24.5 h after adding the cytokine triad affected neither NOS-2 expression nor NOS-2 protein accumulation but stopped BH(4) synthesis and the assembly of the NOS-2 protein into active NOS-2 enzyme. The complete blockage of active NOS-2 production by the brief exposure to U0126 was bypassed by simply adding BH(4) to the culture medium. Therefore, this cytokine triad triggered two completely separable, tandem operating mechanisms in normal human astrocytes, the first being NOS-2 gene expression and accumulation of NOS-2 protein and the second being the synthesis of the BH(4) factor needed to dimerize the NOS-2 protein into active, NO-making NOS-2 enzyme.  相似文献   

7.
The mitotic checkpoint prevents cells with unaligned chromosomes from prematurely exiting mitosis by inhibiting the anaphase-promoting complex/cyclosome (APC/C) from targeting key proteins for ubiquitin-mediated proteolysis. We have examined the mechanism by which the checkpoint inhibits the APC/C by purifying an APC/C inhibitory factor from HeLa cells. We call this factor the mitotic checkpoint complex (MCC) as it consists of hBUBR1, hBUB3, CDC20, and MAD2 checkpoint proteins in near equal stoichiometry. MCC inhibitory activity is 3,000-fold greater than that of recombinant MAD2, which has also been shown to inhibit APC/C in vitro. Surprisingly, MCC is not generated from kinetochores, as it is also present and active in interphase cells. However, only APC/C isolated from mitotic cells was sensitive to inhibition by MCC. We found that the majority of the APC/C in mitotic lysates is associated with the MCC, and this likely contributes to the lag in ubiquitin ligase activity. Importantly, chromosomes can suppress the reactivation of APC/C. Chromosomes did not affect the inhibitory activity of MCC or the stimulatory activity of CDC20. We propose that the preformed interphase pool of MCC allows for rapid inhibition of APC/C when cells enter mitosis. Unattached kinetochores then target the APC/C for sustained inhibition by the MCC.  相似文献   

8.
9.
The level of integrin alpha(v)beta3 and its ligand osteopontin (OPN) has been directly correlated to tumorigenicity of melanoma and other cancer cells. We have previously shown an increase in pp(60c-Src) kinase activity associated with integrin alpha(v)beta3 in melanoma cells (M21) treated with soluble OPN. pp(60c-Src) kinase activity was not observed in melanoma cells expressing alpha(v) that lacks the cytoplasmic domain (alpha(v)995). Results of the current study demonstrate that the amino acid sequence '995RPPQEEQERE1004' in the beta-turn of alpha(v) chain is required for the interaction of pp(60c-Src). Our results suggest that the beta-turn of alpha(v) chain may be indispensable for alpha(v)-associated signaling complex formation and outside-in signaling. To further analyze the alpha(v)beta3 signaling in melanoma cells, we over expressed OPN in M21 cells (M21/OPN). CD44 surface expression and MMP-2 activity in the conditioned medium were increased to a greater extent in M21/OPN cells as compared with M21 or alpha(v)995 cells. Also, M21/OPN cells exhibit increased motility, which is markedly reduced upon treatment with inhibitors to alpha(v) and MMP-2. Our findings suggest that the increase in MMP-2 activity is integrin-dependent as MMP-2 activity is reduced in cells treated with an inhibitor to alpha(v) or in alpha(v)995 cells expressing mutant alpha(v).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号