首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetically modified (GM) cotton altered for insect and herbicide resistance released into commercial production in 1996 to 1997 now accounts for the lion's share of cotton acreage in the U.S. The rapid increase in transgenic cotton acreage in such a short period of time attests to the overall success of agricultural biotechnology. Grower satisfaction with transgenic cotton is largely due to several significant benefits, such as lower production costs, streamlined yet flexible management, and a reduced impact on the environment. This review article provides an overview of what has been accomplished thus far, as well as what improved germplasm may lurk on the horizon. A critical assessment of the gene delivery systems in cotton and possible targets for improvement is presented. The performance of the first generation of transgenic cotton plants engineered for insect, disease, or herbicide resistance is evaluated from the perspective of the benefits, the limitations that impact field performance, and management strategies. A few traits that hold future promise for increasing fiber productivity, enhancing and/or increasing the novelty of cotton-based products for the consumer, and improving human health and well-being are presented. Above all, cotton biotechnology offers to greatly enhance breeding programs by introducing novel traits that have eluded more traditional plant improvement methods and therefore will likely play an increasingly important role in the genetic improvement of cotton.  相似文献   

2.
Cover illustration Special Issue: International Biotechnology. Efforts to develop biotechnological strategies for various applications have reached a global scale as indicated by the diverse international representation at the IBS2012 organized by the Asian Federation of Biotechnology (AFOB). For this special issue's cover, one such useful technique – the rapid gene knockout method – is schematically shown: a series of outer grey arrows represent the multiple steps required for conventional gene knockout experiments, while the inner green arrow represents the rapid gene knockout method; the steam-engine and the bullet train are used to further illustrate the difference. Image provided by Sang Yup Lee and Chan Woo Song (KAIST, Korea).  相似文献   

3.
Biotechnology     
A selection of interesting papers that were published in the two months before our press date in major journals most likely to report significant results in biotechnology.  相似文献   

4.
Cover illustration This Special Issue of Biotechnology Journal is edited by Prof. Eva Stöger and covers the latest breakthroughs in plant biotechnology. The cover image shows genetically modified corn producing an anti-HIV antibody along with DsRed as a visual marker. Image courtesy of Dr. Thomas Rademacher (RWTH and Fraunhofer IME, Aachen, Germany). Border around image: © boulemon – Fotolia.com.  相似文献   

5.
This article attempts to bridge the gap between the arena of computers and the ever expanding protocols for individuals interested in accessing available information on biotechnology. A brief overview of the Internet and how to find information is provided. However, the focus of this review is on “what is out there’ for the biotechnologist and how to find it. Internet addresses for some key sites are listed.  相似文献   

6.
Biotechnology     
A selection of interesting papers that were published in the two months before our press date in major journals most likely to report significant results in biotechnology.  相似文献   

7.
8.
Biotechnology     
A selection of interesting papers that were published in the two months before our press date in major journals most likely to report significant results in biotechnology.  相似文献   

9.
In this review I am summarizing the past and current progress in the field of pharmaceutical, diagnostic, therapeutic, and reproductive cloning in mammals. Several human gene products can be pharmaceutically explored in transgenic farm animals and employed for medical applications. Preimplantation genetic diagnosis (PGD) is utilizing modern molecular cloning techniques to detect genetic and chromosomal aberrations in early embryos originating from patients with inborn errors at risk for hereditary diseases or age-related risk for abnormal karyotype. Stem cell engineering from early human embryos is creating new and promising but also controversial applications for therapeutic and regenerative medicine. Potential risk factors for reproductive cloning are presented and discussed in the context of possible developmental malformations, frequently observed after embryo culture and cloning in farm animals. Future extension of biotechnology to human reproductive cloning is currently under worldwide dispute.  相似文献   

10.
Abstract

The completion of the WHO Schistosoma Genome Project in 2008, although not fully annotated, provides a golden opportunity to actively pursue fundamental research on the parasites genome. This analysis will aid identification of targets for drugs, vaccines and markers for diagnostic tools as well as for studying the biological basis of drug resistance, infectivity and pathology. For the validation of drug and vaccine targets, the genomic sequence data is only of use if functional analyses can be conducted (in the parasite itself). Until recently, gene manipulation approaches had not been seriously addressed. This situation is now changing and rapid advances have been made in gene silencing and transgenesis of schistosomes.  相似文献   

11.
流式细胞术   总被引:6,自引:0,他引:6  
流式细胞术是一种综合应用光学、机械学、流体力学、电子计算机、细胞生物学、分子免疫学等学科技术,对高速流动的细胞或亚细胞进行快速定量测定和分析的方法。它一秒钟能分析几千个细胞,并同时测定细胞的多个参数,广泛应用于生物医学的许多领域,如测定细胞的特征(形态、膜电位等)和细胞内pH,细胞DNA、蛋白质含量、表面受体、Ca2+等。对生物工程学来说,了解细胞的这些参数尤为重要,因为它们能比用传统技术测得的数据更好地描述细胞群体。从流式细胞仪对细胞多种参数的测定及原理,到它在生物工程学中的应用等方面进行了介绍,并讨论了流式细胞术的局限性和面临的挑战。  相似文献   

12.
巴西是世界上第二大植物生物技术农作物生产国。预计在2011-2012年间种植生物技术农作物的面积将增加16%。种植面积的增加主要归因于巴西增加了生物技术玉米事件的审批,并为农民提供信贷补贴。本报告还提供了最新数据用以反映新的贸易信息和政府资源。  相似文献   

13.
Since adopting the National Biotechnology Strategy in 2001, the South African government has established several regional innovation centres and has put in place initiatives to encourage international partnerships that can spur internal development of life science ventures. This strategy seeks to capitalize on the high quality of research carried out in public research institutions and universities but is hampered, somewhat, by the lack of entrepreneurial culture among South African researchers due to, among other reasons, the expenses involved in registering foreign patents. Although private sector development is still relatively embryonic, start-ups are spinning out of universities and pre-existing companies. These represent a vital source of innovations for commercialization in the future, provided that the challenges facing the emerging South African biotechnology industry can be overcome.  相似文献   

14.
Over the last decade, there has been an increasing scientific and public interest in bacteria that may positively contribute to human gut health and well-being. This interest is reflected by the ever-increasing number of developed functional food products containing health-promoting bacteria and reaching the market place as well as by the growing revenue and profits of notably bacterial supplements worldwide. Traditionally, the origin of probiotic-marketed bacteria was limited to a rather small number of bacterial species that mostly belong to lactic acid bacteria and bifidobacteria. Intensifying research efforts on the human gut microbiome offered novel insights into the role of human gut microbiota in health and disease, while also providing a deep and increasingly comprehensive understanding of the bacterial communities present in this complex ecosystem and their interactions with the gut-liver-brain axis. This resulted in rational and systematic approaches to select novel health-promoting bacteria or to engineer existing bacteria with enhanced probiotic properties. In parallel, the field of gut microbiomics developed into a fertile framework for the identification, isolation and characterization of a phylogenetically diverse array of health-promoting bacterial species, also called next-generation therapeutic bacteria. The present review will address these developments with specific attention for the selection and improvement of a selected number of health-promoting bacterial species and strains that are extensively studied or hold promise for future food or pharma product development.  相似文献   

15.
Summary Genetic engineering techniques have so far had limited impact in the field of ornamental horticulture. As outlined in this review, transformation systems and potential genes of interest are available. As the development of new, novel varieties is an important driving force in the industry, there are, therefore, good prospects for the development of genetically modified ornamental variaties. The few products in the market to date may simply be a reflection of the relatively small scale of the industry compared to the major food crops, and the wide diversity of species within it. Commercial issues attendant to the use of gene technology in ornamental plants need careful consideration. These include careful choice of crop and background variety, the international regulatory process and freedom to operate.  相似文献   

16.
The continued development of new cell culture technology is essential for the future growth and application of insect cell and baculovirus biotechnology. The use of cell lines for academic research and for commercial applications is currently dominated by two cell lines; the Spodoptera frugiperda line, SF21 (and its clonal isolate, SF9), and the Trichoplusia ni line, BTI 5B1-4, commercially known as High Five cells. The long perceived prediction that the immense potential application of the baculovirus-insect cell system, as a tool in cell and molecular biology, agriculture, and animal health, has been achieved. The versatility and recent applications of this popular expression system has been demonstrated by both academia and industry and it is clear that this cell-based system has been widely accepted for biotechnological applications. Numerous small to midsize startup biotechnology companies in North America and the Europe are currently using the baculovirus-insect cell technology to produce custom recombinant proteins for research and commercial applications. The recent breakthroughs using the baculovirus-insect cell-based system for the development of several commercial products that will impact animal and human health will further enhance interest in this technology by pharma. Clearly, future progress in novel cell and engineering advances will lead to fundamental scientific discoveries and serve to enhance the utility and applications of this baculovirus-insect cell system.  相似文献   

17.
18.

In assessing the likely demand for biotechnology products it is not sufficient just to look at what is happening in firms and their immediate market environment. There is no one 'market' for biotechnology products: there are differences between sectors and between countries. You have instead to look at the institutional contexts of the biotechnology product's development. This paper reviews work which has been carried out by social scientists, especially those using 'social shaping' approaches, on the development of new products based on advances in biotechnology and on the creation of markets to go with these products. It examines work on public attitudes to the exploitation of the technology, focusing especially on the issue of social inclusion and exclusion and how biotechnology might make exclusion more likely. It concludes by considering what current differences in public attitudes to the development of some biotechnology-based products might mean for the development of markets for those products in the UK.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号