首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae of the non-O1/non-O139 serotype are present in coastal lagoons of southern France. In these Mediterranean regions, the rivers have long low-flow periods followed by short-duration or flash floods during and after heavy intense rainstorms, particularly at the end of the summer and in autumn. These floods bring large volumes of freshwater into the lagoons, reducing their salinity. Water temperatures recorded during sampling (15 to 24°C) were favorable for the presence and multiplication of vibrios. In autumn 2011, before heavy rainfalls and flash floods, salinities ranged from 31.4 to 36.1‰ and concentrations of V. parahaemolyticus, V. vulnificus, and V. cholerae varied from 0 to 1.5 × 103 most probable number (MPN)/liter, 0.7 to 2.1 × 103 MPN/liter, and 0 to 93 MPN/liter, respectively. Following heavy rainstorms that generated severe flash flooding and heavy discharge of freshwater, salinity decreased, reaching 2.2 to 16.4‰ within 15 days, depending on the site, with a concomitant increase in Vibrio concentration to ca. 104 MPN/liter. The highest concentrations were reached with salinities between 10 and 20‰ for V. parahaemolyticus, 10 and 15‰ for V. vulnificus, and 5 and 12‰ for V. cholerae. Thus, an abrupt decrease in salinity caused by heavy rainfall and major flooding favored growth of human-pathogenic Vibrio spp. and their proliferation in the Languedocian lagoons. Based on these results, it is recommended that temperature and salinity monitoring be done to predict the presence of these Vibrio spp. in shellfish-harvesting areas of the lagoons.  相似文献   

2.
Vibriosis is a leading cause of seafood-associated morbidity and mortality in the United States. Typically associated with consumption of raw or undercooked oysters, vibriosis associated with clam consumption is increasingly being reported. However, little is known about the prevalence of Vibrio spp. in clams. The objective of this study was to compare the levels of Vibrio cholerae, Vibrio vulnificus, and Vibrio parahaemolyticus in oysters and clams harvested concurrently from Long Island Sound (LIS). Most probable number (MPN)–real-time PCR methods were used for enumeration of total V. cholerae, V. vulnificus, V. parahaemolyticus, and pathogenic (tdh+ and/or trh+) V. parahaemolyticus. V. cholerae was detected in 8.8% and 3.3% of oyster (n = 68) and clam (n = 30) samples, with levels up to 1.48 and 0.48 log MPN/g in oysters and clams, respectively. V. vulnificus was detected in 97% and 90% of oyster and clam samples, with median levels of 0.97 and −0.08 log MPN/g, respectively. V. parahaemolyticus was detected in all samples, with median levels of 1.88 and 1.07 log MPN/g for oysters and clams, respectively. The differences between V. vulnificus and total and pathogenic V. parahaemolyticus levels in the two shellfish species were statistically significant (P < 0.001). These data indicate that V. vulnificus and total and pathogenic V. parahaemolyticus are more prevalent and are present at higher levels in oysters than in hard clams. Additionally, the data suggest differences in vibrio populations between shellfish harvested from different growing area waters within LIS. These results can be used to evaluate and refine illness mitigation strategies employed by risk managers and shellfish control authorities.  相似文献   

3.
An efficient electroporation procedure for Vibrio vulnificus was designed using the new cloning vector pVv3 (3,107 bp). Transformation efficiencies up to 2 × 106 transformants per μg DNA were achieved. The vector stably replicated in both V. vulnificus and Escherichia coli and was also successfully introduced into Vibrio parahaemolyticus and Vibrio cholerae. To demonstrate the suitability of the vector for molecular cloning, the green fluorescent protein (GFP) gene and the vvhBA hemolysin operon were inserted into the vector and functionally expressed in Vibrio and E. coli.  相似文献   

4.
Vibrio parahaemolyticus, V. cholerae, and V. vulnificus were isolated from 10.3%, 1.0%, and 0.1% of 885 blue mussel samples, respectively. Four of the samples contained trh+ V. parahaemolyticus, while no tdh-positive isolates were detected. The V. cholerae isolates were non-O:1/non-O:139 serotypes and were ctxA negative.  相似文献   

5.
This study shows that naturally occurring Vibrio predatory bacteria (VPB) exert a major role in controlling pathogenic vibrios in seawater and shellfish. The growth and persistence of Vibrio parahaemolyticus and Vibrio vulnificus were assessed in natural seawater and in the Eastern oyster, Crassostrea virginica. The pathogens examined were V. vulnificus strain VV1003, V. parahaemolyticus O1:KUT (KUT stands for K untypeable), and V. parahaemolyticus O3:K6 and corresponding O3:K6 mutants deficient in the toxRS virulence regulatory gene or the rpoS alternative stress response sigma factor gene. Vibrios were selected for streptomycin resistance, which facilitated their enumeration. In natural seawater, oysters bioconcentrated each Vibrio strain for 24 h at 22°C; however, counts rapidly declined to near negligible levels by 72 h. In natural seawater with or without oysters, vibrios decreased more than 3 log units to near negligible levels within 72 h. Neither toxRS nor rpoS had a significant effect on Vibrio levels. In autoclaved seawater, V. parahaemolyticus O3:K6 counts increased 1,000-fold over 72 h. Failure of the vibrios to persist in natural seawater and oysters led to screening of the water samples for VPB on lawns of V. parahaemolyticus O3:K6 host cells. Many VPB, including Bdellovibrio and like organisms (BALOs; Bdellovibrio bacteriovorus and Bacteriovorax stolpii) and Micavibrio aeruginosavorus-like predators, were detected by plaque assay and electron microscopic analysis of plaque-purified isolates from Atlantic, Gulf Coast, and Hawaiian seawater. When V. parahaemolyticus O3:K6 was added to natural seawater containing trace amounts of VPB, Vibrio counts diminished 3 log units to nondetectable levels, while VPB increased 3 log units within 48 h. We propose a new paradigm that VPB are important modulators of pathogenic vibrios in seawater and oysters.  相似文献   

6.
The bacterial species, Vibrio parahaemolyticus and Vibrio vulnificus, are ubiquitous in estuaries and coastal waters throughout the world, but they also happen to be important human pathogens. They are concentrated by filter‐feeding shellfish which are often consumed raw or undercooked, providing an important potential route of entry for an infective dose of these bacteria. Vibrio parahaemolyticus can cause abdominal cramping, nausea, diarrhoea, vomiting, chills and fever. Vibrio vulnificus can cause similar gastrointestinal‐related symptoms, but can also spread to the bloodstream, resulting in primary septicaemia, and it can also cause disease via wound infections. The objective of this article is to summarize, for the first time, the incidence and importance of V. parahaemolyticus and V. vulnificus in South America, in environmental waters and seafood, especifically molluscan shellfish, as well as human infection cases and outbreaks. It appears that infections from V. parahaemolyticus have been more strongly related to shellfish ingestion and have been more frequently reported on the Pacific coast of South America. Conversely, V. vulnificus has been more frequently acquired by water contact with open wounds and its presence has been more heavily reported along the Atlantic coast of South America, and while documented to cause serious mortality, have been relatively few in number. The impacts of El Nino Southern Oscillation (ENSO) have been observed to cause an increase in V. parahaemolyticus outbreaks on the Pacific coast of South America. The implementation of a regulated monitoring approach, along with the use of faster, more accurate and virulence‐specific detection approaches, such as PCR confirmation, should be considered to detect the presence of pathogenic Vibrio strains in environmental and seafood samples for protection of public health. Furthermore, improved clinical surveillance with suspected cases should be implemented. This review highlights the need for more research and monitoring of vibrios in South America, in water, shellfish and clinical samples.  相似文献   

7.
Aims: To develop an effective multiplex PCR for simultaneous and rapid detection of Vibrio cholerae, Vibrio vulnificus and Vibrio parahaemolyticus, the three most important Vibrio species that can cause devastating health hazards among human. Methods and Results: Species‐specific PCR primers were designed based on toxR gene for V. cholerae and V. parahaemolyticus, and vvhA gene for V. vulnificus. The multiplex PCR was validated with 488 Vibrio strains including 322 V. cholerae, 12 V. vulnificus, and 82 V. parahaemolyticus, 20 other Vibrio species and 17 other bacterial species associated with human diseases. It could detect the three target bacteria without any ambiguity even among closely related species. It showed good efficiency in detection of co‐existing target species in the same sample. The detection limit of all the target species was ten cells per PCR tube. Conclusions: Specificity and sensitivity of the multiplex PCR is 100% each and sufficient for simultaneous detection of these potentially pathogenic Vibrio species in clinical and environmental samples. Significance and Impact of the Study: This simple, rapid and cost‐effective method can be applicable in a prediction system to prevent disease outbreak by these Vibrio species and can be considered as an effective tool for both epidemiologist and ecologist.  相似文献   

8.
The United States has federal regulations in place to reduce the risk of seafood-related infection caused by the estuarine bacteria Vibrio vulnificus and Vibrio parahaemolyticus. However, data to support the development of regulations have been generated in a very few specific regions of the nation. More regionally specific data are needed to further understand the dynamics of human infection relating to shellfish-harvesting conditions in other areas. In this study, oysters and water were collected from four oyster harvest sites in North Carolina over an 11-month period. Samples were analyzed for the abundances of total Vibrio spp., V. vulnificus, and V. parahaemolyticus; environmental parameters, including salinity, water temperature, wind velocity, and precipitation, were also measured simultaneously. By utilizing these data, preliminary predictive management tools for estimating the abundance of V. vulnificus bacteria in shellfish were developed. This work highlights the need for further research to elucidate the full suite of factors that drive V. parahaemolyticus abundance.  相似文献   

9.
The number of reported Vibrio-related wound infections associated with recreational bathing in Northern Europe has increased within the last decades. In order to study the health risk from potentially pathogenic Vibrio spp. in the central Wadden Sea, the seasonal and spatial distribution of Vibrio vulnificus, Vibrio parahaemolyticus, Vibrio alginolyticus and Vibrio cholerae were investigated at ten recreational beaches in this area over a 2-year period. V. alginolyticus and V. parahaemolyticus were found to be omnipresent all year round in the study area, while V. vulnificus occurrence was restricted to summer months in the estuaries of the rivers Ems and Weser. Multiple linear regression models revealed that water temperature is the most important determinant of Vibrio spp. occurrence in the area. Differentiated regression models showed a species-specific response to water temperature and revealed a particularly strong effect of even minor temperature increases on the probability of detecting V. vulnificus in summer. In sediments, Vibrio spp. concentrations were up to three orders of magnitude higher than in water. Also, V. alginolyticus and V. parahaemolyticus were found to be less susceptible towards winter temperatures in the benthic environment than in the water, indicating an important role of sediments for Vibrio ecology. While only a very small percentage of tested V. parahaemolyticus proved to be potentially pathogenic, the presence of V. vulnificus during the summer months should be regarded with care.  相似文献   

10.
Vibrio parahaemolyticus and Vibrio vulnificus, which are native to estuaries globally, are agents of seafood-borne or wound infections, both potentially fatal. Like all vibrios autochthonous to coastal regions, their abundance varies with changes in environmental parameters. Sea surface temperature (SST), sea surface height (SSH), and chlorophyll have been shown to be predictors of zooplankton and thus factors linked to vibrio populations. The contribution of salinity, conductivity, turbidity, and dissolved organic carbon to the incidence and distribution of Vibrio spp. has also been reported. Here, a multicoastal, 21-month study was conducted to determine relationships between environmental parameters and V. parahaemolyticus and V. vulnificus populations in water, oysters, and sediment in three coastal areas of the United States. Because ecologically unique sites were included in the study, it was possible to analyze individual parameters over wide ranges. Molecular methods were used to detect genes for thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and tdh-related hemolysin (trh) as indicators of V. parahaemolyticus and the hemolysin gene vvhA for V. vulnificus. SST and suspended particulate matter were found to be strong predictors of total and potentially pathogenic V. parahaemolyticus and V. vulnificus. Other predictors included chlorophyll a, salinity, and dissolved organic carbon. For the ecologically unique sites included in the study, SST was confirmed as an effective predictor of annual variation in vibrio abundance, with other parameters explaining a portion of the variation not attributable to SST.  相似文献   

11.
Real-Time PCR Analysis of Vibrio vulnificus from Oysters   总被引:1,自引:0,他引:1       下载免费PDF全文
Vibrio vulnificus is an opportunistic human pathogen commonly found in estuarine environments. Infections are associated with raw oyster consumption and can produce rapidly fatal septicemia in susceptible individuals. Standard enumeration of this organism in shellfish or seawater is laborious and inaccurate; therefore, more efficient assays are needed. An oligonucleotide probe derived from the cytolysin gene, vvhA, was previously used for colony hybridizations to enumerate V. vulnificus. However, this method requires overnight growth, and vibrios may lack culturability under certain conditions. In the present study, we targeted the same locus for development of a TaqMan real-time PCR assay. Probe specificity was confirmed by amplification of 28 V. vulnificus templates and by the lack of a PCR product with 22 non-V. vulnificus strains. Detection of V. vulnificus in pure cultures was observed over a 6-log-unit linear range of concentration (102 to 108 CFU ml−1), with a lower limit of 72 fg of genomic DNA μl of PCR mixture−1 or the equivalent of six cells. Similar sensitivity was observed in DNA extracted from mixtures of V. vulnificus and V. parahaemolyticus cells. Real-time PCR enumeration of artificially inoculated oyster homogenates correlated well with colony hybridization counts (r2 = 0.97). Numbers of indigenous V. vulnificus cells in oysters by real-time PCR showed no significant differences from numbers from plate counts with probe (t test; P = 0.43). Viable but nonculturable cells were also enumerated by real-time PCR and confirmed by the BacLight viability assay. These data indicate that real-time PCR can provide sensitive species-specific detection and enumeration of V. vulnificus in seafood.  相似文献   

12.
A novel Vibrio vulnificus-infecting bacteriophage, SSP002, belonging to the Siphoviridae family, was isolated from the coastal area of the Yellow Sea of South Korea. Host range analysis revealed that the growth inhibition of phage SSP002 is relatively specific to V. vulnificus strains from both clinical and environmental samples. In addition, a one-step growth curve analysis and a bacteriophage stability test revealed a latent period of 65 min, a burst size of 23 ± 2 PFU, as well as broad temperature (20°C to 60°C) and pH stability (pH 3 to 12) ranges. A Tn5 random transposon mutation of V. vulnificus and partial DNA sequencing of the inserted Tn5 regions revealed that the flhA, flhB, fliF, and fleQ mutants are resistant to SSP002 phage infection, suggesting that the flagellum may be the host receptor for infection. The subsequent construction of specific gene-inactivated mutants (flhA, flhB, fliF, and fleQ) and complementation experiments substantiated this. Previously, the genome of phage SSP002 was completely sequenced and analyzed. Comparative genomic analysis of phage SSP002 and Vibrio parahaemolyticus phage vB_VpaS_MAR10 showed differences among their tail-related genes, supporting different host ranges at the species level, even though their genome sequences are highly similar. An additional mouse survival test showed that the administration of phage SSP002 at a multiplicity of infection of 1,000 significantly protects mice from infection by V. vulnificus for up to 2 months, suggesting that this phage may be a good candidate for the development of biocontrol agents against V. vulnificus infection.  相似文献   

13.
Human Vibrio infections associated with consumption of raw shellfish greatly impact the seafood industry. Vibrio cholerae-related disease is occasionally attributed to seafood, but V. vulnificus and V. parahaemolyticus are the primary targets of postharvest processing (PHP) efforts in the United States, as they pose the greatest threat to the industry. Most successful PHP treatments for Vibrio reduction also kill the molluscs and are not suitable for the lucrative half-shell market, while nonlethal practices are generally less effective. Therefore, novel intervention strategies for Vibrio reduction are needed for live oyster products. Chitosan is a bioactive derivative of chitin that is generally recognized as safe as a food additive by the FDA, and chitosan microparticles (CMs) were investigated in the present study as a potential PHP treatment for live oyster applications. Treatment of broth cultures with 0.5% (wt/vol) CMs resulted in growth cessation of V. cholerae, V. vulnificus, and V. parahaemolyticus, reducing culturable levels to nondetectable amounts after 3 h in three independent experiments. Furthermore, a similar treatment in artificial seawater at 4, 25, and 37°C reduced V. vulnificus levels by ca. 7 log CFU/ml after 24 h of exposure, but 48 h of exposure and elevated temperature were required to achieve similar results for V. parahaemolyticus and V. cholerae. Live oysters that either were artificially inoculated or contained natural populations of V. vulnificus and V. parahaemolyticus showed significant and consistent reductions following CM treatment (5%) compared to the amounts in the untreated controls. Thus, the results strongly support the promising potential for the application of CMs as a PHP treatment to reduce Vibrio spp. in intact live oysters.  相似文献   

14.
Vibrio parahaemolyticus is a gram-negative, halophilic bacterium indigenous to marine and estuarine environments and it is capable of causing food and water-borne illness in humans. It can also cause disease in marine animals, including cultured species. Currently, culture-based techniques are used for quantification of V. parahaemolyticus in environmental samples; however, these can be misleading as they fail to detect V. parahaemolyticus in a viable but nonculturable (VBNC) state which leads to an underestimation of the population density. In this study, we used a novel fluorescence visualization technique, called recognition of individual gene fluorescence in situ hybridization (RING-FISH), which targets chromosomal DNA for enumeration. A polynucleotide probe labeled with Cyanine 3 (Cy3) was created corresponding to the ubiquitous V. parahaemolyticus gene that codes for thermolabile hemolysin (tlh). When coupled with the Kogure method to distinguish viable from dead cells, RING-FISH probes reliably enumerated total, viable V. parahaemolyticus. The probe was tested for sensitivity and specificity against a pure culture of tlh+, tdh, trhV. parahaemolyticus, pure cultures of Vibrio vulnificus, Vibrio harveyi, Vibrio alginolyticus and Vibrio fischeri, and a mixed environmental sample. This research will provide additional tools for a better understanding of the risk these environmental organisms pose to human health.  相似文献   

15.
Response of Pathogenic Vibrio Species to High Hydrostatic Pressure   总被引:3,自引:0,他引:3       下载免费PDF全文
Vibrio parahaemolyticus ATCC 17802, Vibrio vulnificus ATCC 27562, Vibrio cholerae O:1 ATCC 14035, Vibrio cholerae non-O:1 ATCC 14547, Vibrio hollisae ATCC 33564, and Vibrio mimicus ATCC 33653 were treated with 200 to 300 MPa for 5 to 15 min at 25°C. High hydrostatic pressure inactivated all strains of pathogenic Vibrio without triggering a viable but nonculturable (VBNC) state; however, cells already existing in a VBNC state appeared to possess greater pressure resistance.  相似文献   

16.
Enhanced Broth Media for Selective Growth of Vibrio vulnificus   总被引:1,自引:0,他引:1       下载免费PDF全文
Rapid detection of Vibrio vulnificus can be enhanced by optimizing the components of enrichment broth. PNC (5% peptone, 1% NaCl, and 0.08% cellobiose [pH 8.0]) enhanced the growth of V. vulnificus compared to alkaline peptone broth. PNCC (PNC with 1.0 to 4.1 U of colistin methanesulfonate per ml) increased the growth of low levels of V. vulnificus while suppressing non-target bacteria.  相似文献   

17.
The occurrence, diversity, and pathogenicity of Vibrio spp. were investigated in two estuaries along the Italian Adriatic coast. Vibrio alginolyticus was the predominant species, followed by Vibrio parahaemolyticus, non-O1 Vibrio cholerae, and Vibrio vulnificus. By using a biochemical fingerprinting method, all isolates were grouped into nine phenotypes with similarity levels of 75 to 97.5%. The production of toxins capable of causing cytoskeleton-dependent changes was detected in a large number of Vibrio strains. These findings indicate a significant presence of potentially pathogenic Vibrio strains along the Adriatic coast.  相似文献   

18.
Detection of the human pathogen Vibrio parahaemolyticus often relies on molecular biological analysis of species-specific virulence factor genes. These genes have been employed in determinations of V. parahaemolyticus population numbers and the prevalence of pathogenic V. parahaemolyticus strains. Strains of the Vibrionaceae species Photobacterium damselae, Vibrio diabolicus, Vibrio harveyi, and Vibrio natriegens, as well as strains similar to Vibrio tubiashii, were isolated from a pristine salt marsh estuary. These strains were examined for the V. parahaemolyticus hemolysin genes tdh, trh, and tlh and for the V. parahaemolyticus type III secretion system 2α gene vscC2 using established PCR primers and protocols. Virulence-related genes occurred at high frequencies in non-V. parahaemolyticus Vibrionaceae species. V. diabolicus was of particular interest, as several strains were recovered, and the large majority (>83%) contained virulence-related genes. It is clear that detection of these genes does not ensure correct identification of virulent V. parahaemolyticus. Further, the occurrence of V. parahaemolyticus-like virulence factors in other vibrios potentially complicates tracking of outbreaks of V. parahaemolyticus infections.  相似文献   

19.
A tetrazolium dye reduction assay was used to study factors governing the killing of bacteria by oyster hemocytes. In vitro tests were performed on bacterial strains by using hemocytes from oysters collected from the same location in winter and summer. Vibrio parahaemolyticus strains, altered in motility or colonial morphology (opaque and translucent), and Listeria monocytogenes mutants lacking catalase, superoxide dismutase, hemolysin, and phospholipase activities were examined in winter and summer. Vibrio vulnificus strains, opaque and translucent (with and without capsules), were examined only in summer. Among V. parahaemolyticus and L. monocytogenes, significantly (P < 0.05) higher levels of killing by hemocytes were observed in summer than in winter. L. monocytogenes was more resistant than V. parahaemolyticus or V. vulnificus to the bactericidal activity of hemocytes. In winter, both translucent strains of V. parahaemolyticus showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. In summer, only one of the V. parahaemolyticus translucent strains showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. No significant differences (P > 0.05) in killing by hemocytes were observed between opaque (encapsulated) and translucent (nonencapsulated) pairs of V. vulnificus. Activities of 19 hydrolytic enzymes were measured in oyster hemolymph collected in winter and summer. Only one enzyme, esterase (C4), showed a seasonal difference in activity (higher in winter than in summer). These results suggest that differences existed between bacterial genera in their ability to evade killing by oyster hemocytes, that a trait(s) associated with the opaque phenotype may have enabled V. parahaemolyticus to evade killing by the oyster’s cellular defense, and that bactericidal activity of hemocytes was greater in summer than in winter.  相似文献   

20.
During the unusually warm summer in Denmark in 1994, 11 clinical cases of Vibrio vulnificus infection were reported. These reports initiated an investigation of the occurrence of V. vulnificus biotypes in Danish marine environments. Samples of coastal water, sediment, shellfish, and wild fish were analyzed by preenrichment in alkaline peptone water amended with polymyxin B (2.0 × 104 U/liter) followed by streaking onto modified cellobiose-polymyxin B-colistin agar. V. vulnificus-like colonies were tested with a V. vulnificus-specific DNA probe. Low densities of V. vulnificus were detected in water (0.8 to 19 CFU/liter) from June until mid-September and in sediment (0.04 to >11 CFU/g) from July until mid-November. The presence of V. vulnificus was strongly correlated with water temperature. However, we isolated V. vulnificus from water from a mussel farm at a lower temperature than previously reported (7°C). In 1 of the 13 locations studied, V. vulnificus was found in mussels in 7 of 17 samples analyzed; this is the first report of V. vulnificus in European shellfish. V. vulnificus was also isolated from gills, intestinal contents, and mucus from wild fish. Although biotyping of 706 V. vulnificus strains isolated during our investigations revealed that the majority of the strains (99.6%) belonged to biotype 1, biotype 2 was detected in seawater at a low frequency (0.4%). Our findings provide further evidence that seawater can serve as a reservoir and might facilitate spread of V. vulnificus biotype 2 to eels, with subsequent spread to persons handling eels. In conclusion, our data demonstrate that V. vulnificus is ubiquitous in a temperate marine environment and that V. vulnificus biotype 2 is not strictly confined to eels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号