首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蛋白质组学是后基因组时代兴起的新型学科,是从整体水平对蛋白质的综合分析。阿尔茨海默病、帕金森病、肌萎缩侧索硬化症等是最常见的神经退行性疾病。应用蛋白质组学对它们进行研究,不仅可从蛋白质水平上揭示疾病的本质,还有助于全面探讨其病理机制,建立诊断标准,发现药物治疗靶点。  相似文献   

2.
Neurological disorders (NDs) are one of the leading causes of death especially in the developed countries. Among those NDs, Alzheimer’s disease (AD) and Parkinson disease (PD) are heading the table. There have been several reports in the scientific literatures which suggest the linkage between cardiovascular disorders (CVDs) and NDs. In the present communication, we have tried to compile NDs (AD and PD) association with CVDs reported in the literature. Based on the available scientific literature, we believe that further comprehensive study needs to be done to elucidate the molecular linking points associated with the above mentioned disorders.Abbreviations: AD, Alzheimer’s disease, Aβ, β amyloid, PD, Parkinson disease, l-DOPA, l-dihydroxyphenylalanine, LBs, Lewy bodies, DA, dopamine, APP, amyloid precursor protein, CVD, cardiovascular disease  相似文献   

3.
Phosphorylation is a key post-translational modification for cellular signaling, and abnormalities in this process are observed in several neurodegenerative disorders. Among these disorders, Parkinson’s disease (PD) is particularly intriguing as there are both genetic causes of disease that involve phosphorylation, and pathological hallmarks of disease composed of a hyperphosphorylated protein. Two of the major genes linked to PD are themselves kinases – leucine rich repeat kinase 2 (LRRK2) and phosphatase and tensin induced homolog kinase 1 (PINK1). Mutations in LRRK2 lead to its increased kinase activity and dominantly inherited PD, while mutations in PINK1 lead to loss of function and recessive PD. A third genetic linkage to disease is α-synuclein, a protein that is heavily phosphorylated in Lewy bodies and Lewy neurites, the pathological hallmarks of PD. The phosphorylation of α-synuclein at various residues influences its aggregation, either positively or negatively, thereby impacting its central role in disease pathogenesis. Given these associations of phosphorylation with PD, modulation of this modification is an attractive therapeutic strategy. The kinases that act in these disease relevant pathways have been the primary target for such approaches. But, the development of kinase inhibitors has been complicated by the necessary specificity to retain safety, the redundancy of kinases leading to lack of efficacy, and the difficulties in overcoming the blood–brain barrier. The field of modulating phosphatases has the potential to overcome some of these issues and provide the next generation of therapeutic targets for PD. In this review, we address the phosphorylation pathways involved in PD, the kinases and issues related to their inhibition, and the evolving field of the phosphatases relevant in PD and how they may be targeted pharmacologically.  相似文献   

4.
Parkinson’s disease (PD) is a common neurodegenerative disorder. The motor neuron degeneration 2 mutant (mnd2) mouse is considered to be an animal model of PD, and exhibits striatal neuron loss, severe muscle wasting, weight loss and death before 40 days of age. We found for the first time that parkin expression was decreased in the mnd2 mouse brain. Since parkin is a crucial protein for PD, the neurodegenerative disorder in mnd2 mice may be caused by parkin protein loss. We therefore examined whether compensation of parkin protein prevents neurodegenerative disorders in mnd2 mice by generating parkin-transgenic (parkin-Tg) mnd2 mice. However, both parkin-Tg mnd2 mice and mnd2 mice were smaller than wild type mice. In muscle strength and survival rate, parkin-Tg mnd2 mice showed similar values to mnd2 mice. Our data suggest that repression of parkin protein does not play a major role in neurodegeneration of mnd2 mice and administration of parkin protein does not rescue mnd2 mice.  相似文献   

5.
We have recently reported on the differential alterations of various cholinergic markers in cortical and subcortical regions in Alzheimer's disease (AD). The main purpose of the present study was to determine if cholinergic deficits observed in patients with AD are unique to this disorder or can be generalized to others such as idiopathic Parkinson's disease (PD) and PD with Alzheimer-type dementia (PD/AD). Muscarinic M1, M2, and nicotinic receptor binding parameters (KD and Bmax) were determined in various cortical and subcortical areas using selective radioligands ([3H]pirenzepine, [3H]AF-DX 116, and N[3H]methylcarbamylcholine). Choline acetyltransferase activity was also determined as a marker of the integrity of cholinergic innervation. Alterations of cholinergic markers are comparable in cortical areas in AD, PD, and PD/AD brains. In frontal and temporal cortices, as well as in the hippocampus, choline acetyltransferase activity and binding capacities of M2 and nicotinic binding sites are similarly decreased in these three disorders compared with age-matched control values. M1 receptor binding parameters are not significantly modified in cortical areas in patients with these disorders. In contrast, important differences between AD and PD brain tissues are found in subcortical areas such as the striatum and the thalamus. The density of M1 sites is significantly increased in striatal areas only in patients with AD, whereas densities of nicotinic sites are decreased in thalamus and striatum in PD and PD/AD, but not AD, brain tissues. The binding capacity of M2 sites is apparently unchanged in subcortical areas in all three disorders, although tendencies toward reductions are observed in the striatum of PD and PD/AD patients. Thus, although comparable alterations of various cholinergic markers are observed in cortical areas in the three neurological disorders investigated in the present study, important differences are seen in subcortical areas. This may be relevant to the respective etiological and clinical profiles of AD and PD.  相似文献   

6.
帕金森病(Parkinson's disease,PD)是常见的中枢神经系统退行性疾病之一,其主要病理学特征是中脑黑质部的多巴胺(dopamine,DA)能神经元选择性丢失.虽然已发现基因易感性、衰老、环境毒素等因素与PD发病有关,但导致DA能神经元退行性死亡的细胞分子机制仍不明确.DA代谢是DA能神经元中的重要生理过...  相似文献   

7.
The common underlying feature of most neurodegenerative diseases such as Alzheimer disease (AD), prion diseases, Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) involves accumulation of misfolded proteins leading to initiation of endoplasmic reticulum (ER) stress and stimulation of the unfolded protein response (UPR). Additionally, ER stress more recently has been implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Autophagy plays an essential role in the clearance of aggregated toxic proteins and degradation of the damaged organelles. There is evidence that autophagy ameliorates ER stress by eliminating accumulated misfolded proteins. Both abnormal UPR and impaired autophagy have been implicated as a causative mechanism in the development of various neurodegenerative diseases. This review highlights recent advances in the field on the role of ER stress and autophagy in AD, prion diseases, PD, ALS and HAND with the involvement of key signaling pathways in these processes and implications for future development of therapeutic strategies.  相似文献   

8.
Parkinson's disease (PD) and Huntington's disease (HD) are progressive chronic neurodegenerative disorders that are accompanied by a considerable impairment of the motor functions. PD may develop for familial or sporadic reasons, whereas HD is based on a definite genetic mutation. Nevertheless, the pathological processes involve oxidative stress and glutamate excitotoxicity in both cases. A number of metabolic routes are affected in these disorders. The decrease in antioxidant capacity and alterations in the kynurenine pathway, the main pathway of the tryptophan metabolism, are features that deserve particular interest, because the changes in levels of neuroactive kynurenine pathway compounds appear to be strongly related to the oxidative stress and glutamate excitotoxicity involved in the disease pathogenesis. Increase of the antioxidant capacity and pharmacological manipulation of the kynurenine pathway are therefore promising therapeutic targets in these devastating disorders.  相似文献   

9.
The NAD+-dependent protein deacetylase sirtuin 1 (SIRT1), a member of the sirtuin family, may have a neuroprotective effect in multiple neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). Many studies have suggested that overexpression-induced or resveratrol-treated activation of SIRT1 could significantly ameliorate several neurodegenerative diseases in mouse models. However, the type of SIRT1, protein expression levels and underlying mechanisms remain unclear, especially in PD. In this study, the results demonstrated that SIRT1 knockout markedly worsened the movement function in MPTP-lesioned animal model of PD. SIRT1 expression was found to be markedly decreased not only in environmental factor PD models, neurotoxin MPP+-treated primary culture neurons and MPTP-induced mice but also in genetic factor PD models, overexpressed α-synuclein-A30PA53T SH-SY5Y stable cell line and hm2α-SYN-39 transgenic mouse strain. Importantly, the degradation of SIRT1 during MPP+ treatment was mediated by the ubiquitin-proteasome pathway. Furthermore, the results indicated that cyclin-dependent kinase 5 (Cdk5) was also involved in the decrease of SIRT1 expression, which could be efficiently blocked by the inhibition of Cdk5. In conclusion, our findings revealed that the Cdk5-dependent ubiquitin-proteasome pathway mediated degradation of SIRT1 plays a vital role in the progression of PD.  相似文献   

10.
Aberrant protein folding is severely problematic and manifests in numerous disorders, including amyotrophic lateral sclerosis (ALS), Parkinson disease (PD), Huntington disease (HD), and Alzheimer disease (AD). Patients with each of these disorders are characterized by the accumulation of mislocalized protein deposits. Treatments for these disorders remain palliative, and no available therapeutics eliminate the underlying toxic conformers. An intriguing approach to reverse deleterious protein misfolding is to upregulate chaperones to restore proteostasis. We recently reported our work to re-engineer a prion disaggregase from yeast, Hsp104, to reverse protein misfolding implicated in human disease. These potentiated Hsp104 variants suppress TDP-43, FUS, and α-synuclein toxicity in yeast, eliminate aggregates, reverse cellular mislocalization, and suppress dopaminergic neurodegeneration in an animal model of PD. Here, we discuss this work and its context, as well as approaches for further developing potentiated Hsp104 variants for application in reversing protein-misfolding disorders.  相似文献   

11.
Apathy is one of the least investigated symptom of Parkinson disease (PD). In the article there are data of frequency, diagnostic features, pathophysiology and treatment of apathy in PD. The aim of the investigation was to evaluate the frequency of apathy in PD without dementia, evaluate the relationship with other neuropsychiatric and motor disorders, influence on the life quality. 115 patients (age-63.84±0.6 years, stage 2.6±0.3) with PD without dementia were included in the investigation. There were used the following scales: scale of evaluation stages of PD by Hoehn-Yahr, UPDRS (part 〈〈activity of daily living〉〉, 〈〈motor functions 〉〉); Beck Depression Inventory, Spielberger State Trait Anxiety Inventory, Parkinson Disease Sleep Scale- PDSS, Epworth Sleepiness Scale, Parkinson Fatigue Scale-PFS- 16, SCOPA-Cog, Lilli Apathy Rating Scale LARS and Apathy Scale AS. Apathy was found in 25% of patients. The frequency and severity of apathy does not depend on stage and duration of PD. It was found positive correlation of apathy and hypokinesia. In different stages of PD there was variability of relationships of apathy with depression, executive functions and sleep disorders. We suppose the heterogeneity of apathy in PD because of the variability of the association with other neuropsychiatric (affective, cognitive, sleep) disorders. It was found the negative influence of apathy on daily activity, emotional and social aspects of life quality.  相似文献   

12.
One of the tuberous sclerosis complex (TSC) gene products, tuberin is assumed to be the functional component, being involved in a wide variety of cellular processes. Here, we report for the first time that tuberin dysfunction may represent a mechanism for neuronal damage in Alzheimer’s disease (AD), Parkinson’s disease with dementia (PD/DLB), and a mouse model of PD. Tuberin was hyperphosphorylated at Thr1462 in post-mortem frontal cortex tissue of both AD and PD/DLB patients and in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP). Both PTEN and Akt phosphoactivation corresponded to the hyperphosphorylation patterns of tuberin suggesting that the PTEN–Akt pathway might be the mechanism of tuberin phosphorylation. Our data provide new information regarding the possible role of tuberin dysfunction in major neurodegenerative disorders, such as AD and PD, whereby inhibition of tuberin function may trigger an onset of neuronal cell death.  相似文献   

13.
14.
帕金森病的尿动力学表现及临床意义   总被引:1,自引:0,他引:1  
为了评估有持久膀胱排尿障碍的帕金森氏病患者的尿动力学表现及其临床意义,对25例帕金森氏病患者行尿动力检查,并要求记录并回收24小时排尿日记.结果显示,1)有18例患者出现膀胱过度活动,逼尿肌收缩力低下或无反射4例,膀胱出口梗阻6例,另3例检查结果正常,无一例出现逼尿肌-括约肌协同失调; 2)患者所返回的排尿日记显示帕金森氏病患者普遍出现日排尿次数增加及每次排尿量的减少.由此可以得出结论:逼尿肌反射亢进是帕金森氏病患者尿动力学检查的最常见类型;尿动力学检查对正确处理帕金森氏病患者的排尿障碍有指导意义.  相似文献   

15.
Parkinson's disease (PD) is a major age-related neurodegenerative disorder characterized by a massive and specific loss of dopaminergic neurons of the substantia nigra pars compacta. The cellular alterations are clinically translated into an invalidating movement disability associated to three canonical symptoms that are bradykinesia, resting tremor and rigidity. The exact causes of this neuronal loss are unknown, but a network of evidences indicates a major contribution of orchestrated cell death processes, also known as apoptosis. Apoptotic cell death is a normal process, the alteration of which triggers several pathologies including cancer and neurodegenerative disorders. Exhaustive work has been done to delineate the cellular mechanisms responsible for the exacerbated cell death of dopaminergic neurons observed in PD. Overall, the oncogene p53 has been identified as a key effector protein.This review will focus on the clues linking p53 to the etiology of PD and the evidences that this protein may be at the center of multiple signaling cascades not only altered by mutations of various proteins responsible for familial cases of PD but also on more general sporadic cases of this devastating disease.  相似文献   

16.
摘要 目的:探讨老年帕金森病(PD)患者睡眠障碍的危险因素,并观察睡眠障碍对认知功能、心理状态和衰弱的影响。方法:选取2018年3月~2021年9月期间中国人民解放军海军青岛特勤疗养中心收治的91例老年PD患者作为研究对象,根据是否存在睡眠障碍将入选的91例患者分为睡眠障碍组(n=56)及非睡眠障碍组(n=35)。采用蒙特利尔认知评估量表(MoCA)评估所有患者的认知功能状况。采用汉密尔顿焦虑量表(HAMA)、汉密尔顿抑郁量表(HAMD)评价患者焦虑、抑郁情况。采用Tilburg衰弱评估量表评估所有患者的衰弱情况。采用多因素Logistic回归分析探讨老年PD患者睡眠障碍的危险因素,并观察睡眠障碍对认知功能、心理状态和衰弱的影响。结果:睡眠障碍组的视空间与执行功能、语言、命名、延迟回忆、注意、抽象、定向评分及总分均低于非睡眠障碍组(P<0.05)。睡眠障碍组的HAMA、HAMD评分均高于非睡眠障碍组(P<0.05)。睡眠障碍组的心理衰弱、躯体衰弱、社会衰弱评分及总分均高于非睡眠障碍组(P<0.05)。多因素Losgistic回归分析结果显示:HAMA评分偏高、多巴丝肼片等效剂量偏高、HAMD评分偏高、Hcy偏高是老年PD患者睡眠障碍的危险因素(P<0.05)。结论:HAMA评分偏高、Hcy偏高、多巴丝肼片等效剂量偏高、HAMD评分偏高是老年PD患者睡眠障碍的危险因素。同时,睡眠障碍可加重老年PD患者的认知功能障碍和衰弱程度,增加抑郁焦虑情绪。  相似文献   

17.
Nitric oxide (NO) is a janus faced chemical messenger, which, in the recent years, has been the focus of neurobiologists for its involvement in neurodegenerative disorders in particular, Parkinson's disease (PD). Nitric oxide synthase, the key enzyme involved in NO production exists in three known isoforms. The neuronal and inducible isoforms have been implicated in the pathogenesis of PD. These enzymes are subject to complex expressional and functional regulation involving mRNA diversity, phosphorylation and protein interaction. In the recent years, mRNA diversity and polymorphisms have been identified in the NOS isoforms. Some of these genetic variations have been associated with PD, indicating an etiological role for the NOS genes. This review mainly focuses on the NOS genes - their differential regulation and genetic heterogeneity, highlighting their significance in the pathobiology of PD.  相似文献   

18.
Recent studies have begun to investigate the role of agrin in brain and suggest that agrin's function likely extends beyond that of a synaptogenic protein. Particularly, it has been shown that agrin is associated with the pathological lesions of Alzheimer's disease (AD) and may contribute to the formation of beta-amyloid (Abeta) plaques in AD. We have extended the analysis of agrin's function in neurodegenerative diseases to investigate its role in Parkinson's disease (PD). Alpha-synuclein is a critical molecular determinant in familial and sporadic PD, with the formation of alpha-synuclein fibrils being enhanced by sulfated macromolecules. In the studies reported here, we show that agrin binds to alpha-synuclein in a heparan sulfate-dependent (HS-dependent) manner, induces conformational changes in this protein characterized by beta-sheet structure, and enhances insolubility of alpha-synuclein. We also show that agrin accelerates the formation of protofibrils by alpha-synuclein and decreases the half-time of fibril formation. The association of agrin with PD lesions was also explored in PD human brain, and these studies shown that agrin colocalizes with alpha-synuclein in neuronal Lewy bodies in the substantia nigra of PD brain. These studies indicate that agrin is capable of accelerating the formation of insoluble protein fibrils in a second common neurodegenerative disease. These findings may indicate shared molecular mechanisms leading to the pathophysiology in these two neurodegenerative disorders.  相似文献   

19.
《Autophagy》2013,9(10):1633-1635
Mutations in the GBA gene encoding glucocerebrosidase cause Gaucher disease (GD), the most prevalent of the lysosomal storage disorders (LSDs) and increase susceptibility to Parkinson disease (PD). Clinically the two disorders can present in a similar manner with analogous pathological features, suggesting mechanistic links between the two disease states. An increasing body of evidence implicates defects in quality control pathways in both, and suggests that LSDs, as a group, can be classed as disorders of autophagy. Using a mouse model of type II neuronopathic GD, we observed global defects in cellular quality control pathways in midbrain neurons and astrocytes. Our data suggest that downregulation of autophagy, mitophagy, and the ubiquitin-proteasome system (UPS) results in accumulation of dysfunctional and fragmented mitochondria, insoluble SNCA/α-synuclein deposits and ubiquitinated proteins. These observations show that dysfunction of cellular quality control pathways lead to impaired energy and free radical homeostasis, providing new insights into the mechanisms of neurodegeneration in GD and illuminating the links between GD and PD.  相似文献   

20.
The contribution of iron dysregulation to the etiology of a variety of neuronal diseases comes as no surprise given its necessity in numerous general cellular and neuron‐specific functions, its abundance, and its highly reactive nature. Homeostatic mechanisms such as the iron regulatory protein and hypoxia‐inducible factor pathways are firmly evolutionarily set in place to prevent ‘free’ iron from participating in chemical Fenton and Haber‐Weiss reactions which can result in subsequent generation of toxic hydroxyl radicals. However, given the multiple layers of complexity in cellular iron regulation, disruption of any number of genetic and environmental components can disturb the delicate balance between the various molecular players involved in maintaining an appropriate metabolic iron homeostasis. In this review, we will primarily focus on: (i) the impact of aging and gender on iron dysfunction as these are important criteria in the determination of iron‐related disorders such as Parkinson’s disease (PD), (ii) how iron mismanagement via disruption of cellular entry and exit pathways may contribute to these disorders, and (iii) how the availability of non‐invasive measurement of brain iron may aid in PD diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号