首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While plant litters are the main source of soil organic matter (SOM) in forests, the controllers and pathways to stable SOM formation remain unclear. Here, we address how litter type (13C/15N‐labeled needles vs. fine roots) and placement‐depth (O vs. A horizon) affect in situ C and N dynamics in a temperate forest soil after 5 years. Litter type rather than placement‐depth controlled soil C and N retention after 5 years in situ, with belowground fine root inputs greatly enhancing soil C (x1.4) and N (x1.2) retention compared with aboveground needles. While the proportions of added needle and fine root‐derived C and N recovered into stable SOM fractions were similar, they followed different transformation pathways into stable SOM fractions: fine root transfer was slower than for needles, but proportionally more of the remaining needle‐derived C and N was transferred into stable SOM fractions. The stoichiometry of litter‐derived C vs. N within individual SOM fractions revealed the presence at least two pools of different turnover times (per SOM fraction) and emphasized the role of N‐rich compounds for long‐term persistence. Finally, a regression approach suggested that models may underestimate soil C retention from litter with fast decomposition rates.  相似文献   

2.
Forest ecosystems are important global soil carbon (C) reservoirs, but their capacity to sequester C is susceptible to climate change factors that alter the quantity and quality of C inputs. To better understand forest soil C responses to altered C inputs, we integrated three molecular composition published data sets of soil organic matter (SOM) and soil microbial communities for mineral soils after 20 years of detrital input and removal treatments in two deciduous forests: Bousson Forest (BF), Harvard Forest (HF), and a coniferous forest: H.J. Andrews Forest (HJA). Soil C turnover times were estimated from radiocarbon measurements and compared with the molecular-level data (based on nuclear magnetic resonance and specific analysis of plant- and microbial-derived compounds) to better understand how ecosystem properties control soil C biogeochemistry and dynamics. Doubled aboveground litter additions did not increase soil C for any of the forests studied likely due to long-term soil priming. The degree of SOM decomposition was higher for bacteria-dominated sites with higher nitrogen (N) availability while lower for the N-poor coniferous forest. Litter exclusions significantly decreased soil C, increased SOM decomposition state, and led to the adaptation of the microbial communities to changes in available substrates. Finally, although aboveground litter determined soil C dynamics and its molecular composition in the coniferous forest (HJA), belowground litter appeared to be more influential in broadleaf deciduous forests (BH and HF). This synthesis demonstrates that inherent ecosystem properties regulate how soil C dynamics change with litter manipulations at the molecular-level. Across the forests studied, 20 years of litter additions did not enhance soil C content, whereas litter reductions negatively impacted soil C concentrations. These results indicate that soil C biogeochemistry at these temperate forests is highly sensitive to changes in litter deposition, which are a product of environmental change drivers.  相似文献   

3.
Root controls on soil microbial community structure in forest soils   总被引:16,自引:0,他引:16  
Brant JB  Myrold DD  Sulzman EW 《Oecologia》2006,148(4):650-659
We assessed microbial community composition as a function of altered above- and belowground inputs to soil in forest ecosystems of Oregon, Pennsylvania, and Hungary as part of a larger Detritus Input and Removal Treatment (DIRT) experiment. DIRT plots, which include root trenching, aboveground litter exclusion, and doubling of litter inputs, have been established in forested ecosystems in the US and Europe that vary with respect to dominant tree species, soil C content, N deposition rate, and soil type. This study used phospholipid fatty-acid (PLFA) analysis to examine changes in the soil microbial community size and composition in the mineral soil (0–10 cm) as a result of the DIRT treatments. At all sites, the PLFA profiles from the plots without roots were significantly different from all other treatments. PLFA analysis showed that the rootless plots generally contained larger quantities of actinomycete biomarkers and lower amounts of fungal biomarkers. At one of the sites in an old-growth coniferous forest, seasonal changes in PLFA profiles were also examined. Seasonal differences in soil microbial community composition were greater than treatment differences. Throughout the year, treatments without roots continued to have a different microbial community composition than the treatments with roots, although the specific PLFA biomarkers responsible for these differences varied by season. These data provide direct evidence that root C inputs exert a large control on microbial community composition in the three forested ecosystems studied.  相似文献   

4.
When aboveground materials are harvested for fuel production, such as with Sorghum bicolor, the sustainability of annual bioenergy feedstocks is influenced by the ability of root inputs to contribute to the formation and persistence of soil organic matter (SOM), and to soil fertility through nutrient recycling. Using 13C and 15N labeling, we traced sorghum root and leaf litter‐derived C and N for 19 months in the field as they were mineralized or formed SOM. Our in situ litter incubation experiment confirms that sorghum roots and leaves significantly differ in their inherent chemical recalcitrance. This resulted in different contributions to C and N storage and recycling. Overall root residues had higher biochemical recalcitrance which led to more C retention in soil (27%) than leaf residues (19%). However, sorghum root residues resulted in higher particulate organic matter (POM) and lower mineral associated organic matter (MAOM), deemed to be the most persistent fraction in soil, than leaf residues. Additionally, the overall higher root‐derived C retention in soil led to higher N retention, reducing the immediate recycling of fertility from root as compared to leaf decomposition. Our study, conducted in a highly aggregated clay‐loam soil, emphasized the important role of aggregates in new SOM formation, particularly the efficient formation of MAOM in microaggregate structures occluded within macroaggregates. Given the known role of roots in promoting aggregation, efficient formation of MAOM within aggregates can be a major mechanism to increase persistent SOM storage belowground when aboveground residues are removed. We conclude that promoting root inputs in S. bicolor bioenergy production systems through plant breeding efforts may be an effective means to counterbalance the aboveground residue removal. However, management strategies need to consider the quantity of inputs involved and may need to support SOM storage and fertility with additional organic matter additions.  相似文献   

5.
Recent reviews indicate that N deposition increases soil organic matter (SOM) storage in forests but the undelying processes are poorly understood. Our aim was to quantify the impacts of increased N inputs on soil C fluxes such as C mineralization and leaching of dissolved organic carbon (DOC) from different litter materials and native SOM. We added 5.5 g N m?2 yr?1 as NH4NO3 over 1 year to two beech forest stands on calcareous soils in the Swiss Jura. We replaced the native litter layer with 13C‐depleted twigs and leaves (δ13C: ?38.4 and ?40.8‰) in late fall and measured N effects on litter‐ and SOM‐derived C fluxes. Nitrogen addition did not significantly affect annual C losses through mineralization, but altered the temporal dynamics in litter mineralization: increased N inputs stimulated initial mineralization during winter (leaves: +25%; twigs: +22%), but suppressed rates in the subsequent summer. The switch from a positive to a negative response occurred earlier and more strongly for leaves than for twigs (?21% vs. 0%). Nitrogen addition did not influence microbial respiration from the nonlabeled calcareous mineral soil below the litter which contrasts with recent meta‐analysis primarily based on acidic soils. Leaching of DOC from the litter layer was not affected by NH4NO3 additions, but DOC fluxes from the mineral soils at 5 and 10 cm depth were significantly reduced by 17%. The 13C tracking indicated that litter‐derived C contributed less than 15% of the DOC flux from the mineral soil, with N additions not affecting this fraction. Hence, the suppressed DOC fluxes from the mineral soil at higher N inputs can be attributed to reduced mobilization of nonlitter derived ‘older’ DOC. We relate this decline to an altered solute chemistry by NH4NO3 additions, an increased ionic strength and acidification resulting from nitrification, rather than to a change in microbial decomposition.  相似文献   

6.
Previous studies have found that root carbon inputs to the soil can stimulate the mineralization of existing soil carbon (C) pools. It is still uncertain, however, whether this “primed” C is derived from elevated rates of soil organic matter (SOM) decomposition, greater C release from microbial pools, or both. The goal of this research was to determine how the activities of the microbial exoenzymes that control SOM decomposition are affected by root C inputs. This was done by manipulating rhizodeposition with tree girdling in a coniferous subalpine forest in the Rocky Mountains of Colorado, USA, and following changes in the activities of nine exoenzymes involved in decomposition, as well as soil dissolved organic C, dissolved organic and inorganic nitrogen (N), and microbial biomass C and N. We found that rhizodeposition is high in the spring, when the soils are still snow-covered, and that there are large ephemeral populations of microorganisms dependent upon this C. Microbial N acquisition from peptide degradation increased with increases in microbial biomass when rhizodeposition was highest. However, our data indicate that the breakdown of cellulose, lignin, chitin, and organic phosphorus are not affected by springtime increases in soil microbial biomass associated with increases in rhizodeposition. We conclude that the priming of soil C mineralization by rhizodeposition is due to growth of the microbial biomass and an increase in the breakdown of N-rich proteins, but not due to increases in the degradation of plant litter constituents such as cellulose and lignin.  相似文献   

7.
Warmer climates have been associated with reduced bioreactivity of soil organic matter (SOM) typically attributed to increased diagenesis; the combined biological and physiochemical transformation of SOM. In addition, cross‐site studies have indicated that ecosystem regime shifts, associated with long‐term climate warming, can affect SOM properties through changes in vegetation and plant litter production thereby altering the composition of soil inputs. The relative importance of these two controls, diagenesis and inputs, on SOM properties as ecosystems experience climate warming, however, remains poorly understood. To address this issue we characterized the elemental, chemical (nuclear magnetic resonance spectroscopy and total hydrolysable amino acids analysis), and isotopic composition of plant litter and SOM across a well‐constrained mesic boreal forest latitudinal transect in Atlantic Canada. Results across forest sites within each of three climate regions indicated that (1) climate history and diagenesis affect distinct parameters of SOM chemistry, (2) increases in SOM bioreactivity with latitude were associated with elevated proportions of carbohydrates relative to plant waxes and lignin, and (3) despite the common forest type across regions, differences in SOM chemistry by climate region were associated with chemically distinct litter inputs and not different degrees of diagenesis. The observed climate effects on vascular plant litter chemistry, however, explained only part of the regional differences in SOM chemistry, most notably the higher protein content of SOM from warmer regions. Greater proportions of lignin and aliphatic compounds and smaller proportions of carbohydrates in warmer sites' soils were explained by the higher proportion of vascular plant relative to moss litter in the warmer relative to cooler forests. These results indicate that climate change induced decreases in the proportion of moss inputs not only impacts SOM chemistry but also increases the resistance of SOM to decomposition, thus significantly altering SOM cycling in these boreal forest soils.  相似文献   

8.
With climate change, forests are expected to receive increased inputs of carbon (C) and nitrogen (N) but it is unclear how this will modify forest C cycling and storage at the molecular-level. To investigate the response of forest soil organic matter (SOM) to changes in soil inputs, a study area was established in a Michigan hardwood forest as part of the Detrital Input and Removal Treatments (DIRT) network. Experimental treatments were comprised of both exclusions of detrital inputs (No Litter, No Roots, No Inputs) and additions of C and N (Double Litter, N-Addition, Double Litter?+?N, Wood). After 10 years of treatment, the soils were characterized using elemental analysis, molecular biomarker techniques, nuclear magnetic resonance spectroscopy, and microbial biomass C measurements. Although manipulation of detrital inputs did not significantly change the soil C and N content after 10 years, alterations in the cycling and distribution of SOM components were observed. Root exclusion enhanced SOM degradation, while doubling litter favoured the degradation of more labile forms of soil C such as unsaturated n-alkanoic acids and simple sugars. N-Addition and Double Litter?+?N increased the concentrations of extractable biomarkers, including aliphatic and cyclic lipids and compounds derived from cutin, suberin, and lignin. Microbial biomass C also varied with experimental litter input manipulations and N addition, and these data were consistent with the observed changes in SOM composition. Overall, the observed shifts in SOM chemistry after 10 years of manipulating ecosystem inputs highlight the sensitivity of natural systems to changes in amounts of C and N inputs from roots and litter, and N inputs from external sources.  相似文献   

9.
Soil microorganisms regulate fundamental biochemical processes in plant litter decomposition and soil organic matter (SOM) transformations. Understanding how microbial communities respond to changes in vegetation is critical for improving predictions of how land‐cover change affects belowground carbon storage and nutrient availability. We measured intra‐ and interannual variability in soil and forest litter microbial community composition and activity via phospholipid fatty acid analysis (PLFA) and extracellular enzyme activity across a well‐replicated, long‐term chronosequence of secondary forests growing on abandoned pastures in the wet subtropical forest life zone of Puerto Rico. Microbial community PLFA structure differed between young secondary forests and older secondary and primary forests, following successional shifts in tree species composition. These successional patterns held across seasons, but the microbial groups driving these patterns differed over time. Microbial community composition from the forest litter differed greatly from those in the soil, but did not show the same successional trends. Extracellular enzyme activity did not differ with forest succession, but varied by season with greater rates of potential activity in the dry seasons. We found few robust significant relationships among microbial community parameters and soil pH, moisture, carbon, and nitrogen concentrations. Observed inter‐ and intrannual variability in microbial community structure and activity reveal the importance of a multiple, temporal sampling strategy when investigating microbial community dynamics with land‐use change. Successional control over microbial composition with forest recovery suggests strong links between above and belowground communities.  相似文献   

10.
Grassland ecosystems store an estimated 30% of the world's total soil C and are frequently disturbed by wildfires or fire management. Aboveground litter decomposition is one of the main processes that form soil organic matter (SOM). However, during a fire biomass is removed or partially combusted and litter inputs to the soil are substituted with inputs of pyrogenic organic matter (py‐OM). Py‐OM accounts for a more recalcitrant plant input to SOM than fresh litter, and the historical frequency of burning may alter C and N retention of both fresh litter and py‐OM inputs to the soil. We compared the fate of these two forms of plant material by incubating 13C‐ and 15N‐labeled Andropogon gerardii litter and py‐OM at both an annually burned and an infrequently burned tallgrass prairie site for 11 months. We traced litter and py‐OM C and N into uncomplexed and organo‐mineral SOM fractions and CO2 fluxes and determined how fire history affects the fate of these two forms of aboveground biomass. Evidence from CO2 fluxes and SOM C:N ratios indicates that the litter was microbially transformed during decomposition while, besides an initial labile fraction, py‐OM added to SOM largely untransformed by soil microbes. Additionally, at the N‐limited annually burned site, litter N was tightly conserved. Together, these results demonstrate how, although py‐OM may contribute to C and N sequestration in the soil due to its resistance to microbial degradation, a long history of annual removal of fresh litter and input of py‐OM infers N limitation due to the inhibition of microbial decomposition of aboveground plant inputs to the soil. These results provide new insight into how fire may impact plant inputs to the soil, and the effects of py‐OM on SOM formation and ecosystem C and N cycling.  相似文献   

11.
Reforestation of formerly cultivated land is widely understood to accumulate above‐ and belowground detrital organic matter pools, including soil organic matter. However, during 40 years of study of reforestation in the subtropical southeastern USA, repeated observations of above‐ and belowground carbon documented that significant gains in soil organic matter (SOM) in surface soils (0–7.5 cm) were offset by significant SOM losses in subsoils (35–60 cm). Here, we extended the observation period in this long‐term experiment by an additional decade, and used soil fractionation and stable isotopes and radioisotopes to explore changes in soil organic carbon and soil nitrogen that accompanied nearly 50 years of loblolly pine secondary forest development. We observed that accumulations of mineral soil C and N from 0 to 7.5 cm were almost entirely due to accumulations of light‐fraction SOM. Meanwhile, losses of soil C and N from mineral soils at 35 to 60 cm were from SOM associated with silt and clay‐sized particles. Isotopic signatures showed relatively large accumulations of forest‐derived carbon in surface soils, and little to no accumulation of forest‐derived carbon in subsoils. We argue that the land use change from old field to secondary forest drove biogeochemical and hydrological changes throughout the soil profile that enhanced microbial activity and SOM decomposition in subsoils. However, when the pine stands aged and began to transition to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth eased due to pine mortality, and subsoil organic matter levels stabilized. This study emphasizes the importance of long‐term experiments and deep measurements when characterizing soil C and N responses to land use change and the remarkable paucity of such long‐term soil data deeper than 30 cm.  相似文献   

12.
Grassland degradation is a worldwide problem that often leads to substantial loss of soil organic matter (SOM). To estimate the potential for carbon (C) accumulation in degraded grassland soils, we first need to understand how SOM content influences the transformation of plant C and its stabilization within the soil matrix. We conducted a greenhouse experiment using C3 soils with six levels of SOM content; we planted the C4 grass Cleistogenes squarrosa or added its litter to the soils to investigate how SOM content regulates the storage of new soil C derived from litter and roots, the decomposition of extant soil C, and the formation of soil aggregates. We found that with the increase in SOM content, microbial biomass carbon (MBC) and the mineralization of litter C increased. Both the litter addition and planted treatments increased the amount of new C inputs to soil. However, the mineralization of extant soil C was significantly accelerated by the presence of living roots but was not affected by litter addition. Accordingly, the soil C content was significantly higher in the litter addition treatments but was not affected by the planted treatments by the end of the experiment. The soil macroaggregate fraction increased with SOM content and was positively related to MBC. Our experiment suggests that as SOM content increases, plant growth and soil microbial activity increase, which allows microbes to process more plant-derived C and promote new soil C formation. Although long-term field experiments are needed to test the robustness of our findings, our greenhouse experiment suggests that the interactions between SOM content and plant C inputs should be considered when evaluating soil C turnover in degraded grasslands.  相似文献   

13.
How plant inputs from above- versus below-ground affect long term carbon (C) and nitrogen (N) retention and stabilization in soils is not well known. We present results of a decade-long field study that traced the decomposition of 13C- and 15N-labeled Pinus ponderosa needle and fine root litter placed in O or A soil horizons of a sandy Alfisol under a coniferous forest. We measured the retention of litter-derived C and N in particulate (>2 mm) and bulk soil (<2 mm) fractions, as well as in density-separated free light and three mineral-associated fractions. After 10 years, the influence of slower initial mineralization of root litter compared to needle litter was still evident: almost twice as much root litter (44% of C) was retained than needle litter (22–28% of C). After 10 years, the O horizon retained more litter in coarse particulate matter implying the crucial comminution step was slower than in the A horizon, while the A horizon retained more litter in the finer bulk soil, where it was recovered in organo-mineral associations. Retention in these A horizon mineral-associated fractions was similar for roots and needles. Nearly 5% of the applied litter C (and almost 15% of the applied N) was in organo-mineral associations, which had centennial residence times and potential for long-term stabilization. Vertical movement of litter-derived C was minimal after a decade, but N was significantly more mobile. Overall, the legacy of initial litter quality influences total SOM retention; however, the potential for and mechanisms of long-term SOM stabilization are influenced not by litter type but by soil horizon.  相似文献   

14.
Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C‐rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivity of surface soil C pools and fluxes to different litter inputs. After only 2 years of treatment, doubling litterfall inputs increased surface soil C concentrations by 31%, removing litter from the forest floor drove a 26% reduction over the same time period, and these changes in soil C concentrations were associated with variations in dissolved organic matter fluxes, fine root biomass, microbial biomass, soil moisture, and nutrient fluxes. However, the litter manipulations had only small effects on soil organic C (SOC) chemistry, suggesting that changes in C cycling, nutrient cycling, and microbial processes in response to litter manipulation reflect shifts in the quantity rather than quality of SOC. The manipulation also affected soil CO 2 fluxes; the relative decline in CO 2 production was greater in the litter removal plots (?22%) than the increase in the litter addition plots (+15%). Our analysis showed that variations in CO 2 fluxes were strongly correlated with microbial biomass pools, soil C and nitrogen (N) pools, soil inorganic P fluxes, dissolved organic C fluxes, and fine root biomass. Together, our data suggest that shifts in leaf litter inputs in response to localized human disturbances and global environmental change could have rapid and important consequences for belowground C storage and fluxes in tropical rain forests, and highlight differences between tropical and temperate ecosystems, where belowground C cycling responses to changes in litterfall are generally slower and more subtle.  相似文献   

15.
植被凋落物和根系输入在调节森林土壤元素生物地球化学循环中扮演着关键作用。目前仍然不清楚凋落物和根系输入对热带原始林土壤主要元素含量的调控作用。针对该研究现状,以中国南亚热带季风常绿阔叶林为研究对象,通过开展凋落物与根系输入改变的控制试验(6个处理,每处理4次重复:对照、凋落物加倍、凋落物去除、断根、断根+凋落物加倍、断根+去除凋落物),探讨了凋落物和断根处理对土壤可溶性离子、土壤酸中和能力(ANC)和阳离子交换量(CEC)的短期影响。凋落物与根系处理半年后的结果显示:(1)凋落物去除与加倍处理都显著增加了0-40 cm土壤NO3-含量,并且凋落物去除效应大于添加效应;去除凋落物增加了表层土壤(0-20 cm) Ca2+、Mg2+、Na+的含量。(2)断根处理显著增加0-40 cm土壤NO3-和表层土壤Ca2+、Mg2+含量。(3)断根和去除凋落物交互处理显著增加了0-40 cm土壤NO3-和表层土壤Ca2+、Mg2+、K+含量,产生了叠加效应。(4)凋落物和断根处理并没有改变土壤pH,但降低了土壤酸中和能力(除凋落物加倍外),其降低的原因主要与阳离子交换量的降低和NO3-含量的增加有关。这些结果表明,土壤养分离子的可利用性(尤其是NO3-和Ca2+、Mg2+)和酸缓冲能力对凋落物和根系输入改变响应敏感,森林植物及其凋落物对土壤养分保留和缓冲性能具有重要调节作用。在人为干扰和气候变化加剧背景下,该研究可为森林生态系统可持续管理提供重要的理论参考。此外,植被凋落物和根系输入改变引起的长期生态学效应仍值得进一步关注。  相似文献   

16.
Global change is affecting primary productivity in forests worldwide, and this, in turn, will alter long‐term carbon (C) sequestration in wooded ecosystems. On one hand, increased primary productivity, for example, in response to elevated atmospheric carbon dioxide (CO2), can result in greater inputs of organic matter to the soil, which could increase C sequestration belowground. On other hand, many of the interactions between plants and microorganisms that determine soil C dynamics are poorly characterized, and additional inputs of plant material, such as leaf litter, can result in the mineralization of soil organic matter, and the release of soil C as CO2 during so‐called “priming effects”. Until now, very few studies made direct comparison of changes in soil C dynamics in response to altered plant inputs in different wooded ecosystems. We addressed this with a cross‐continental study with litter removal and addition treatments in a temperate woodland (Wytham Woods) and lowland tropical forest (Gigante forest) to compare the consequences of increased litterfall on soil respiration in two distinct wooded ecosystems. Mean soil respiration was almost twice as high at Gigante (5.0 μmol CO2 m?2 s?1) than at Wytham (2.7 μmol CO2 m?2 s?1) but surprisingly, litter manipulation treatments had a greater and more immediate effect on soil respiration at Wytham. We measured a 30% increase in soil respiration in response to litter addition treatments at Wytham, compared to a 10% increase at Gigante. Importantly, despite higher soil respiration rates at Gigante, priming effects were stronger and more consistent at Wytham. Our results suggest that in situ priming effects in wooded ecosystems track seasonality in litterfall and soil respiration but the amount of soil C released by priming is not proportional to rates of soil respiration. Instead, priming effects may be promoted by larger inputs of organic matter combined with slower turnover rates.  相似文献   

17.
Soil respiration (heterotropic and autotropic respiration, Rg) and aboveground litter fall carbon were measured at three forests at different succession (early, middle and advanced) stages in Dinghushan Biosphere Reserve, Southern China. It was found that the soil respiration increases exponentially with soil temperature at 5 cm depth (Ts) according to the relation Rg=a exp(bTs), and the more advanced forest community during succession has a higher value of a because of higher litter carbon input than the forests at early or middle succession stages. It was also found that the monthly soil respiration is linearly correlated with the aboveground litter carbon input of the previous month. Using measurements of aboveground litter and soil respiration, the net primary productions (NPPs) of three forests were estimated using nonlinear inversion. They are 475, 678 and 1148 g C m?2 yr?1 for the Masson pine forest (MPF), coniferous and broad‐leaf mixed forest (MF) and subtropical monsoon evergreen broad‐leaf forest (MEBF), respectively, in year 2003/2004, of which 54%, 37% and 62% are belowground NPP for those three respective forests if no change in live plant biomass is assumed. After taking account of the decrease in live plant biomass, we estimated the NPP of the subtropical MEBF is 970 g C m?2 yr?1 in year 2003/2004. Total amount of carbon allocated below ground for plant roots is 388 g C m?2 yr?1 for the MPF, 504 g C m?2 yr?1 for the coniferous and broad‐leaf MF and 1254 g C m?2 yr?1 for the subtropical MEBF in 2003/2004. Our results support the hypothesis that the amount of carbon allocation belowground increases during forest succession.  相似文献   

18.
An invasive wetland grass primes deep soil carbon pools   总被引:1,自引:0,他引:1       下载免费PDF全文
Understanding the processes that control deep soil carbon (C) dynamics and accumulation is of key importance, given the relevance of soil organic matter (SOM) as a vast C pool and climate change buffer. Methodological constraints of measuring SOM decomposition in the field prevent the addressing of real‐time rhizosphere effects that regulate nutrient cycling and SOM decomposition. An invasive lineage of Phragmites australis roots deeper than native vegetation (Schoenoplectus americanus and Spartina patens) in coastal marshes of North America and has potential to dramatically alter C cycling and accumulation in these ecosystems. To evaluate the effect of deep rooting on SOM decomposition we designed a mesocosm experiment that differentiates between plant‐derived, surface SOM‐derived (0–40 cm, active root zone of native marsh vegetation), and deep SOM‐derived mineralization (40–80 cm, below active root zone of native vegetation). We found invasive P. australis allocated the highest proportion of roots in deeper soils, differing significantly from the native vegetation in root : shoot ratio and belowground biomass allocation. About half of the CO2 produced came from plant tissue mineralization in invasive and native communities; the rest of the CO2 was produced from SOM mineralization (priming). Under P. australis, 35% of the CO2 was produced from deep SOM priming and 9% from surface SOM. In the native community, 9% was produced from deep SOM priming and 44% from surface SOM. SOM priming in the native community was proportional to belowground biomass, while P. australis showed much higher priming with less belowground biomass. If P. australis deep rooting favors the decomposition of deep‐buried SOM accumulated under native vegetation, P. australis invasion into a wetland could fundamentally change SOM dynamics and lead to the loss of the C pool that was previously sequestered at depth under the native vegetation, thereby altering the function of a wetland as a long‐term C sink.  相似文献   

19.
Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high‐arctic tundra heath sites in NE‐Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above‐ and belowground tundra carbon turnover, possibly governed by microbial resource availability.  相似文献   

20.
保护区是维持生物多样性和生态系统功能的最有效方式, 但其保护成效有待提升, 土地利用变化是重要影响因素之一。本研究以神农架国家级自然保护区为对象, 基于神农架地区近20年的调查研究和数据积累, 通过异速生长模型、生物量方程、抽样加权等方法, 对比分析了土地利用方式转变格局下神农架国家级自然保护区森林生态系统地上、地下、凋落物、粗木质残体、土壤有机碳5个碳库动态, 分析论证了20年间(1990-2010)神农架保护区对森林生态系统碳库的保护成效。研究发现, 林地占神农架保护区总面积的92.76%, 其中针叶林(51.85%)、落叶阔叶林(35.11%)及常绿阔叶林(4.47%)3种森林类型合计占林地面积的98.56%。20年间神农架保护区林地面积增加了0.11%, 灌木林地和耕地面积分别减少了8.85%和6.06%。神农架保护区2010年碳储量为24.24 Tg C (22.57-26.62 Tg C), 土壤有机碳和地上碳合计占全部碳储量的90.68%。常绿阔叶林、落叶阔叶林和针叶林3种森林类型碳储量占神农架保护区碳储量的95%。20年间神农架保护区5个碳库碳储量均有所增加, 共固碳25.04 kt C (21.83-29.57 kt C), 固碳率为1.21 kt C/年(1.09-1.48 kt C/年), 其中地上生物量碳库和土壤有机碳库分别增加14.50 kt C (11.81-18.31 kt C)和6.84 kt C。保护区内总碳库碳密度高于保护区外22.37 t C/ha。研究结果表明, 神农架国家级自然保护区在保护森林固碳能力方面取得了一定的成效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号