首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aggregation of huntingtin (htt) in neuronal inclusions is associated with the development of Huntington's disease (HD). Previously, we have shown that mutant htt fragments with polyglutamine (polyQ) tracts in the pathological range (>37 glutamines) form SDS-resistant aggregates with a fibrillar morphology, whereas wild-type htt fragments with normal polyQ domains do not aggregate. In this study we have investigated the co-aggregation of mutant and wild-type htt fragments. We found that mutant htt promotes the aggregation of wild-type htt, causing the formation of SDS-resistant co-aggregates with a fibrillar morphology. Conversely, mutant htt does not promote the fibrillogenesis of the polyQ-containing protein NOCT3 or the polyQ-binding protein PQBP1, although these proteins are recruited into inclusions containing mutant htt aggregates in mammalian cells. The formation of mixed htt fibrils is a highly selective process that not only depends on polyQ tract length but also on the surrounding amino acid sequence. Our data suggest that mutant and wild-type htt fragments may also co-aggregate in neurons of HD patients and that a loss of wild-type htt function may contribute to HD pathogenesis.  相似文献   

2.
Aggregation of disease proteins is believed to be a central event in the pathology of polyglutamine diseases, whereas the relationship between aggregation and neuronal death remains controversial. We investigated this question by expressing mutant huntingtin (htt) with a defective adenovirus in different types of neurons prepared from rat cerebral cortex, striatum or cerebellum. The distribution pattern of inclusions is not identical among different types of primary neurons. On day 2 after infection, cytoplasmic inclusions are dominant in cortical and striatal neurons, whereas at day 4 the ratio of nuclear inclusions overtakes that of cytoplasmic inclusions. Meanwhile, nuclear inclusions are always predominantly present in cerebellar neurons. The percentage of inclusion-positive cells is highest in cerebellar neurons, whereas mutant htt induces cell death most remarkably in cortical neurons. As our system uses htt exon 1 protein and thus aggregation occurs independently from cleavage of the full-length htt, our observations indicate that the aggregation process is distinct among different neurons. Most of the neurons containing intracellular (either nuclear or cytoplasmic) aggregates are viable. Our findings suggest that the process of mutant htt aggregation rather than the resulting inclusion body is critical for neuronal cell death.  相似文献   

3.
Huntington disease (HD) is caused by polyglutamine expansion in the N terminus of huntingtin (htt). Analysis of human postmortem brain lysates by SDS-PAGE and Western blot reveals htt as full-length and fragmented. Here we used Blue Native PAGE (BNP) and Western blots to study native htt in human postmortem brain. Antisera against htt detected a single band broadly migrating at 575-850 kDa in control brain and at 650-885 kDa in heterozygous and Venezuelan homozygous HD brains. Anti-polyglutamine antisera detected full-length mutant htt in HD brain. There was little htt cleavage even if lysates were pretreated with trypsin, indicating a property of native htt to resist protease cleavage. A soluble mutant htt fragment of about 180 kDa was detected with anti-htt antibody Ab1 (htt-(1-17)) and increased when lysates were treated with denaturants (SDS, 8 M urea, DTT, or trypsin) before BNP. Wild-type htt was more resistant to denaturants. Based on migration of in vitro translated htt fragments, the 180-kDa segment terminated ≈htt 670-880 amino acids. If second dimension SDS-PAGE followed BNP, the 180-kDa mutant htt was absent, and 43-50 kDa htt fragments appeared. Brain lysates from two HD mouse models expressed native full-length htt; a mutant fragment formed if lysates were pretreated with 8 M urea + DTT. Native full-length mutant htt in embryonic HD(140Q/140Q) mouse primary neurons was intact during cell death and when cell lysates were exposed to denaturants before BNP. Thus, native mutant htt occurs in brain and primary neurons as a soluble full-length monomer.  相似文献   

4.
Huntington disease (HD) is characterized by the preferential loss of striatal medium-sized spiny neurons (MSNs) in the brain. Because MSNs receive abundant glutamatergic input, their vulnerability to excitotoxicity may be largely influenced by the capacity of glial cells to remove extracellular glutamate. However, little is known about the role of glia in HD neuropathology. Here, we report that mutant huntingtin accumulates in glial nuclei in HD brains and decreases the expression of glutamate transporters. As a result, mutant huntingtin (htt) reduces glutamate uptake in cultured astrocytes and HD mouse brains. In a neuron-glia coculture system, wild-type glial cells protected neurons against mutant htt-mediated neurotoxicity, whereas glial cells expressing mutant htt increased neuronal vulnerability. Mutant htt in cultured astrocytes decreased their protection of neurons against glutamate excitotoxicity. These findings suggest that decreased glutamate uptake caused by glial mutant htt may critically contribute to neuronal excitotoxicity in HD.  相似文献   

5.
We have produced yeast artificial chromosome (YAC) transgenic mice expressing normal (YAC18) and mutant (YAC46 and YAC72) huntingtin (htt) in a developmental and tissue-specific manner identical to that observed in Huntington's disease (HD). YAC46 and YAC72 mice show early electrophysiological abnormalities, indicating cytoplasmic dysfunction prior to observed nuclear inclusions or neurodegeneration. By 12 months of age, YAC72 mice have a selective degeneration of medium spiny neurons in the lateral striatum associated with the translocation of N-terminal htt fragments to the nucleus. Neurodegeneration can be present in the absence of macro- or microaggregates, clearly showing that aggregates are not essential to initiation of neuronal death. These mice demonstrate that initial neuronal cytoplasmic toxicity is followed by cleavage of htt, nuclear translocation of htt N-terminal fragments, and selective neurodegeneration.  相似文献   

6.
Proteolytic fragments of huntingtin (htt) in human lymphoblast cell lines from HD and control cases were compared to those in human HD striatal and cortical brain regions, by western blots with epitope-specific antibodies. HD lymphoblast cell lines were heterozygous and homozygous for the expanded CAG triplet repeat mutations, which represented adult onset and juvenile HD. Lymphoblasts contained NH(2)- and COOH-terminal htt fragments of 20-100 kDa, with many similar htt fragments in HD compared to control lymphoblast cell lines. Detection of htt fragments in a homozygous HD lymphoblast cell line demonstrated proteolysis of mutant htt. It was of interest that adult HD lymphoblasts showed a 63-64 kDa htt fragment detected by the NH(2)-domain antibody, which was not found in controls. In addition, control and HD heterozygous cells showed a common 60-61 kDa band (detected by the NH(2)-domain antibody), which was absent in homozygous HD lymphoblast cells. These results suggest that the 63-64 kDa and 60-61 kDa NH(2)-domain htt fragments may be associated with mutant and normal htt, respectively. In juvenile HD lymphoblasts, the presence of a 66-kDa, instead of the 63-64 kDa N-domain htt fragment, may be consistent with the larger polyglutamine expansion of mutant htt in the juvenile case of HD. Lymphoblasts and striatal or cortical regions from HD brains showed similarities and differences in NH(2)- and COOH-terminal htt fragments. HD striatum showed elevated levels of 50 and 45 kDa NH(2)-terminal htt fragments [detected with anti(1-17) serum] compared to controls. Cortex from HD and control brains showed similar NH(2)-terminal htt fragments of 50, 43, 40, and 20 kDa; lymphoblasts also showed NH(2)-terminal htt fragments of 50, 43, 40, and 20 kDa. In addition, a 48-kDa COOH-terminal htt band was elevated in HD striatum, which was also detected in lymphoblasts. Overall, results demonstrate that mutant and normal htt undergo extensive proteolysis in lymphoblast cell lines, with similarities and differences compared to htt fragments observed in HD striatal and cortical brain regions. These data for in vivo proteolysis of htt are consistent with the observed neurotoxicity of recombinant NH(2)-terminal mutant htt fragments expressed in transgenic mice and in transfected cell lines that may be related to the pathogenesis of HD.  相似文献   

7.
Huntington's disease (HD) is caused by the expansion of a polyglutamine tract in the N-terminal region of huntingtin (htt) and is characterized by selective neurodegeneration. In addition to forming nuclear aggregates, mutant htt accumulates in neuronal processes as well as synapses and affects synaptic function. However, the mechanism for the synaptic toxicity of mutant htt remains to be investigated. We targeted fluorescent reporters for the ubiquitin-proteasome system (UPS) to presynaptic or postsynaptic terminals of neurons. Using these reporters and biochemical assays of isolated synaptosomes, we found that mutant htt decreases synaptic UPS activity in cultured neurons and in HD mouse brains that express N-terminal or full-length mutant htt. Given that the UPS is a key regulator of synaptic plasticity and function, our findings offer insight into the selective neuronal dysfunction seen in HD and also establish a method to measure synaptic UPS activity in other neurological disease models.  相似文献   

8.
Cleavage of huntingtin (htt) has been characterized in vitro, and accumulation of caspase cleavage fragments represents an early pathological change in brains of Huntington's disease (HD) patients. However, the relationship between htt proteolysis and the pathogenesis of HD is unknown. To determine whether caspase cleavage of htt is a key event in the neuronal dysfunction and selective neurodegeneration in HD, we generated YAC mice expressing caspase-3- and caspase-6-resistant mutant htt. Mice expressing mutant htt, resistant to cleavage by caspase-6 but not caspase-3, maintain normal neuronal function and do not develop striatal neurodegeneration. Furthermore, caspase-6-resistant mutant htt mice are protected against neurotoxicity induced by multiple stressors including NMDA, quinolinic acid (QA), and staurosporine. These results are consistent with proteolysis of htt at the caspase-6 cleavage site being an important event in mediating neuronal dysfunction and neurodegeneration and highlight the significant role of htt proteolysis and excitotoxicity in HD.  相似文献   

9.
Proteolytic processing of mutant huntingtin (mhtt) is regarded as a key event in the pathogenesis of Huntington's disease (HD). Mhtt fragments containing a polyglutamine expansion form intracellular inclusions and are more cytotoxic than full-length mhtt. Here, we report that two distinct mhtt fragments, termed cp-A and cp-B, differentially build up nuclear and cytoplasmic inclusions in HD brain and in a cellular model for HD. Cp-A is released by cleavage of htt in a 10 amino acid domain and is the major fragment that aggregates in the nucleus. Furthermore, we provide evidence that cp-A and cp-B are most likely generated by aspartic endopeptidases acting in concert with the proteasome to ensure the normal turnover of htt. These proteolytic processes are thus potential targets for therapeutic intervention in HD.  相似文献   

10.
11.
Huntington’s disease (HD) is caused by abnormal CAG repeat expansion in the 5′-end of the Huntingtin (HTT) gene. In addition to the canonical C-terminal full-length huntingtin (htt) nuclear export signal, a cytoplasmic localization-related domain (CLRD) in the N-terminus of htt has recently been reported. Here, we analyzed this domain by introducing deletion and substitution mutations in a truncated N-terminal htt protein and subsequently monitored htt expression, aggregation and subcellular localization by immunocytochemistry and Western blot analysis. We demonstrated that Htt4–17 was the essential sequence for htt cytoplasmic localization. We also found that the subcellular distribution of htt was altered when Htt1–17 was mutated to contain amino acids of different charges, suggesting a structural requirement of Htt1–17 for the cytoplasmic localization of htt. Deletion of the first three amino acids did not affect its association with mitochondria. We observed that defective cytoplasmic localization resulted in a reduction of total htt aggregates and increased nuclear aggregates, indicating that the subcellular distribution of the protein might influence the aggregation process. These studies provide new insight into the molecular mechanism of htt aggregation in HD.  相似文献   

12.
13.
The cause of Huntington's disease (HD) is a pathological expansion of the polyglutamine domain within the NH(2)-terminal region of huntingtin. Neuronal intranuclear inclusions and cytoplasmic aggregates composed of the mutant huntingtin within certain neuronal populations are a characteristic hallmark of HD. Because in vitro expanded polyglutamine repeats are glutaminyl-donor substrates of tissue transglutaminase (tTG), it has been hypothesized that tTG may contribute to the formation of these aggregates in HD. Therefore, it is of fundamental importance to establish whether tTG plays a significant role in the formation of mutant huntingtin aggregates in the cell. Human neuroblastoma SH-SY5Y cells were stably transfected with truncated NH(2)-terminal huntingtin constructs containing 18 (wild type) or 82 (mutant) glutamines. In the cells expressing the mutant truncated huntingtin construct, numerous SDS-resistant aggregates were present in the cytoplasm and nucleus. Even though numerous aggregates were present in the mutant huntingtin-expressing cells, tTG did not coprecipitate with mutant truncated huntingtin. Further, tTG was totally excluded from the aggregates, and significantly increasing tTG expression had no effect on the number of aggregates or their intracellular localization (cytoplasm or nucleus). When a YFP-tagged mutant truncated huntingtin construct was transiently transfected into cells that express no detectable tTG due to stable transfection with a tTG antisense construct, there was extensive aggregate formation. These findings clearly demonstrate that tTG is not required for aggregate formation, and does not facilitate the process of aggregate formation. Therefore, in HD, as well as in other polyglutamine diseases, tTG is unlikely to play a role in the formation of aggregates.  相似文献   

14.
Butler DC  Messer A 《PloS one》2011,6(12):e29199
Huntington's disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by a trinucleotide (CAG)(n) repeat expansion in the coding sequence of the huntingtin gene, and an expanded polyglutamine (>37Q) tract in the protein. This results in misfolding and accumulation of huntingtin protein (htt), formation of neuronal intranuclear and cytoplasmic inclusions, and neuronal dysfunction/degeneration. Single-chain Fv antibodies (scFvs), expressed as intrabodies that bind htt and prevent aggregation, show promise as immunotherapeutics for HD. Intrastriatal delivery of anti-N-terminal htt scFv-C4 using an adeno-associated virus vector (AAV2/1) significantly reduces the size and number of aggregates in HDR6/1 transgenic mice; however, this protective effect diminishes with age and time after injection. We therefore explored enhancing intrabody efficacy via fusions to heterologous functional domains. Proteins containing a PEST motif are often targeted for proteasomal degradation and generally have a short half life. In ST14A cells, fusion of the C-terminal PEST region of mouse ornithine decarboxylase (mODC) to scFv-C4 reduces htt exon 1 protein fragments with 72 glutamine repeats (httex1-72Q) by ~80-90% when compared to scFv-C4 alone. Proteasomal targeting was verified by either scrambling the mODC-PEST motif, or via proteasomal inhibition with epoxomicin. For these constructs, the proteasomal degradation of the scFv intrabody proteins themselves was reduced<25% by the addition of the mODC-PEST motif, with or without antigens. The remaining intrabody levels were amply sufficient to target N-terminal httex1-72Q protein fragment turnover. Critically, scFv-C4-PEST prevents aggregation and toxicity of httex1-72Q fragments at significantly lower doses than scFv-C4. Fusion of the mODC-PEST motif to intrabodies is a valuable general approach to specifically target toxic antigens to the proteasome for degradation.  相似文献   

15.
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by expansion of a translated CAG repeat in the N terminus of the huntingtin (htt) protein. Here we describe the generation and characterization of a full-length HD Drosophila model to reveal a previously unknown disease mechanism that occurs early in the course of pathogenesis, before expanded htt is imported into the nucleus in detectable amounts. We find that expanded full-length htt (128Qhtt(FL)) leads to behavioral, neurodegenerative, and electrophysiological phenotypes. These phenotypes are caused by a Ca2+-dependent increase in neurotransmitter release efficiency in 128Qhtt(FL) animals. Partial loss of function in synaptic transmission (syntaxin, Snap, Rop) and voltage-gated Ca2+ channel genes suppresses both the electrophysiological and the neurodegenerative phenotypes. Thus, our data indicate that increased neurotransmission is at the root of neuronal degeneration caused by expanded full-length htt during early stages of pathogenesis.  相似文献   

16.
The pathology of Huntington's disease is characterized by neuronal degeneration and inclusions containing N-terminal fragments of mutant huntingtin (htt). To study htt aggregation, we examined purified htt fragments in vitro, finding globular and protofibrillar intermediates participating in the genesis of mature fibrils. These intermediates were high in beta-structure. Furthermore, Congo Red, a dye that stains amyloid fibrils, prevented the assembly of mutant htt into mature fibrils, but not the formation of protofibrils. Other proteins capable of forming ordered aggregates, such as amyloid beta and alpha-synuclein, form similar intermediates, suggesting that the mechanisms of mutant htt aggregation and possibly htt toxicity may overlap with other neurodegenerative disorders.  相似文献   

17.
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine (polyQ) tract in the huntingtin (htt) protein. Mutant htt toxicity is exposed after htt cleavage by caspases and other proteases release NH(2)-terminal fragments containing the polyQ expansion. Here, we show htt interacts and colocalizes with cdk5 in cellular membrane fractions. Cdk5 phosphorylates htt at Ser434, and this phosphorylation reduces caspase-mediated htt cleavage at residue 513. Reduced mutant htt cleavage resulting from cdk5 phosphorylation attenuated aggregate formation and toxicity in cells expressing the NH(2)-terminal 588 amino acids (htt588) of mutant htt. Cdk5 activity is reduced in the brains of HD transgenic mice compared with controls. This result can be accounted for by the polyQ-expanded htt fragments reducing the interaction between cdk5 and its activator p35. These data predict that the ability of cdk5 phosphorylation to protect against htt cleavage, aggregation, and toxicity is compromised in cells expressing toxic fragments of htt.  相似文献   

18.
Although NH2-terminal mutant huntingtin (htt) fragments cause neurological disorders in Huntington's disease (HD), it is unclear how toxic htt fragments are generated and contribute to the disease process. Here, we report that complex NH2-terminal mutant htt fragments smaller than the first 508 amino acids were generated in htt-transfected cells and HD knockin mouse brains. These fragments constituted neuronal nuclear inclusions and appeared before neurological symptoms. The accumulation and aggregation of these htt fragments were associated with an age-dependent decrease in proteasome activity and were promoted by inhibition of proteasome activity. These results suggest that decreased proteasome activity contributes to late onset htt toxicity and that restoring the ability to remove NH2-terminal fragments will provide a more effective therapy for HD than inhibiting their production.  相似文献   

19.
HD (Huntington's disease) is caused by an expanded polyQ (polyglutamine) repeat in the htt (huntingtin protein). GABAergic medium spiny neurons in the striatum are mostly affected in HD. However, mhtt (mutant huntingtin)-induced molecular changes in these neurons remain largely unknown. The present study focuses on the effect of mhtt on the subcellular localization of GAD (glutamic acid decarboxylase), the enzyme responsible for synthesizing GABA (γ-aminobutyric acid). We report that the subcellular distribution of GAD is significantly altered in two neuronal cell lines that express either the N-terminus of mhtt or full-length mhtt. GAD65 is predominantly associated with the Golgi membrane in cells expressing normal htt; however, it diffuses in the cytosol of cells expressing mhtt. As a result, vesicle-associated GAD65 trafficking is impaired. Since palmitoylation of GAD65 is required for GAD65 trafficking, we then demonstrate that palmitoylation of GAD65 is reduced in the HD model. Furthermore, overexpression of HIP14 (huntingtin-interacting protein 14), the enzyme responsible for palmitoylating GAD65 in vivo, could rescue GAD65 palmitoylation and vesicle-associated GAD65 trafficking. Taken together, our data support the idea that GAD65 palmitoylation is important for the delivery of GAD65 to inhibitory synapses and suggest that impairment of GAD65 palmitoylation by mhtt may lead to altered inhibitory neurotransmission in HD.  相似文献   

20.
Huntington disease (HD) is a fatal progressive neurodegenerative disorder associated with expansion of a CAG repeat in the first exon of the gene coding the protein huntingtin (htt). Although the feasibility of RNA interference (RNAi)-mediated reduction of htt expression to attenuate HD-associated symptoms is suggested, the effects of post-symptomatic RNAi treatment in the HD model mice have not yet been certified. Here we show the effects of recombinant adeno-associated virus (rAAV)-mediated delivery of RNAi into the HD model mouse striatum after the onset of disease. Neuropathological abnormalities associated with HD, such as insoluble protein accumulation and down-regulation of DARPP-32 expression, were successfully ameliorated by the RNAi transduction. Importantly, neuronal aggregates in the striatum were reduced after RNAi transduction in the animals comparing to those at the time point of RNAi transduction. These results suggest that the direct inhibition of mutant gene expression by rAVV would be promising for post-symptomatic HD therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号