首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite sharing overall sequence and structural similarities, water channel aquaporin 0 (AQP0) transports water more slowly than other aquaporins. Using molecular dynamics simulations of AQP0 and AQP1, we find that there is a sudden decrease in the distribution profile of water density along the pore of AQP0 in the region of residue Tyr23, which significantly disrupts the single file water chain by forming hydrogen bond with permeating water molecules. Comparisons of free-energy and interaction-energy profiles for water conduction between AQP0 and AQP1 indicate that this interruption of the water chain causes a huge energy barrier opposing water translocation through AQP0. We further show that a mutation of Tyr23 to phenylalanine leads to a 2- to 4-fold enhancement in water permeability of AQP0, from (0.5 ± 0.2) × 10− 14 cm3s− 1 to (1.9 ± 0.6) × 10− 14 cm3s− 1. Therefore, Tyr23 is a dominate factor leading to the low water permeability in AQP0.  相似文献   

2.
Aquaporin-4 (AQP4) is the predominant water channel in different organs and tissues. An alteration of its physiological functioning is responsible for several disorders of water regulation and, thus, is considered an attractive target with a promising therapeutic and diagnostic potential. Molecular dynamics (MD) simulations performed on the AQP4 tetramer embedded in a bilayer of lipid molecules allowed us to analyze the role of spontaneous fluctuations occurring inside the pore. Following the approach by Hashido et al. [Hashido M, Kidera A, Ikeguchi M (2007) Biophys J 93: 373–385], our analysis on 200 ns trajectory discloses three domains inside the pore as key elements for water permeation. Herein, we describe the gating mechanism associated with the well-known selectivity filter on the extracellular side of the pore and the crucial regulation ensured by the NPA motifs (asparagine, proline, alanine). Notably, on the cytoplasmic side, we find a putative gate formed by two residues, namely, a cysteine belonging to the loop D (C178) and a histidine from loop B (H95). We observed that the spontaneous reorientation of the imidazole ring of H95 acts as a molecular switch enabling H-bond interaction with C178. The occurrence of such local interaction seems to be responsible for the narrowing of the pore and thus of a remarkable decrease in water flux rate. Our results are in agreement with recent experimental observations and may represent a promising starting point to pave the way for the discovery of chemical modulators of AQP4 water permeability.  相似文献   

3.
Experiments were performed with the perfused rat submandibular gland in vitro to investigate the nature of the coupling between transported salt and water by varying the osmolarity of the source bath and observing the changes in secretory volume flow. Glands were submitted to hypertonic step changes by changing the saline perfusate to one containing different levels of sucrose. The flow rate responded by falling to a lower value, establishing a new steady-state flow. The rate changes did not correspond to those expected from a system in which fluid production is due to simple osmotic equilibration, but were much larger. The changes were fitted to a model in which fluid production is largely paracellular, the rate of which is controlled by an osmosensor system in the basal membrane. The same experiments were done with glands from rats that had been bred to have very low levels of AQP5 (the principal aquaporin of the salivary acinar cell) in which little AQP5 is expressed at the basal membrane. In these rats, salivary secretion rates after hypertonic challenges were small and best modelled by simple osmotic equilibration. In rats which had intermediate AQP5 levels the changes in flow rate were similar to those of normal rats although their AQP5 levels were reduced. Finally, perfused normal glands were subject to retrograde ductal injection of salines containing different levels of Hg2+ ions (0, 10 and 100 μM) which would act as inhibitors of AQP5 at the apical acinar membrane. The overall flow rates were progressively diminished with rising Hg2+ concentration, but after hypertonic challenge the changes in flow rates were unchanged and similar to those of normal rats. All these results are difficult to explain by a cellular osmotic model but can be explained by a model in which paracellular flow is controlled by an osmosensor (presumably AQP5) present on the basal membrane.  相似文献   

4.
A double lipid bilayer structure containing opposing tetramers of AQP0 aquaporin, in contact through extracellular face loop regions, was recently modeled using an intermediate-resolution map obtained by electron crystallographic methods. The pores of these water channels were found to be critically narrow in three regions and subsequently interpreted to be those of a closed state of the channel. The subsequent determination of a high-resolution AQP0 tetramer structure by X-ray crystallographic methods yielded a pore model featuring two of the three constrictions as noted in the EM work and water molecules within the channel pore. The extracellular-side constriction region of this AQP0 structure was significantly larger than that of the EM-based model and similar to that of the highly water permeable AQP1. The X-ray-based study of AQP0 however could not ascertain if the water molecules found in the pore were the result of water entering from one or both ends of the channel, nor whether water could freely pass through all constriction points. Additionally, this X-ray-based structure could not provide an answer to the question of whether the double lipid bilayer configuration of AQP0 could functionally maintain a water impermeable state of the channel. To address these questions we conducted molecular dynamics simulations to compare the time-dependent behavior of the AQP0 and AQP1 channels within lipid bilayers. The simulations demonstrate that AQP0, in single or double lipid bilayers, is not closed to water transport and that thermal motions of critical side-chains are sufficient to facilitate the movement of water past any of its constriction regions. These motional requirements do however lead to significant free energy barriers and help explain physiological observations that found water permeability in AQP0 to be substantially lower than in the AQP1 pore.  相似文献   

5.
Aquaporins are transmembrane protein channels which are known to help the passage of water and solutes across the cell membranes. AQP1, AQP3 and AQP5 are isoforms of aquaporin known to aid in transepithelial water movement. AQP3 is also known to aid in glycerol transport. The present study was conducted to investigate the role of AQP1, AQP3 and AQP5 in thermoregulation of buffaloes by probing the expression of the genes in skin of buffaloes during different season viz. winter, spring and summer. The skin tissue samples were collected from the neck region of Murrah buffaloes (n = 12) and analyzed for gene expression by RT-PCR and immunolocalization. The physiological responses including respiration rate, rectal temperature and neck skin temperature observed during summer were significantly higher than winter and spring seasons. The study revealed the expression of AQP1, AQP3 and AQP5 genes in skin samples. The relative mRNA expressions of AQP1, AQP3 and AQP5 in skin relative to spring season were 1.41 ± 0.47, 1.95 ± 0.22 and 6.77 ± 1.02 folds during summer which were significantly higher than other seasons. The up-regulation of the expression of the studied AQPs were concomitant with the increase in physiological responses including skin temperature and sweating rate during summer. During summer season, AQP1 were mostly immunolocalized in the walls of skin blood capillaries, while AQP3 were observed mostly in the epidermal layer of the skin. The immunolocalization of AQP5 were mostly observed in the secretory glands of skin. The up-regulation of AQP1, AQP3 and AQP5 in skin during summer season indicates their role in thermoregulation of buffaloes.  相似文献   

6.
7.
Molecular dynamics simulations (2 ns) were conducted on a homology model of the alpha1A adrenoceptor complexed with agonists and antagonists to examine the various receptor conformations induced. These simulations yield insights into the binding site interactions of the active and inactive states of the receptor. Furthermore, our analysis allowed for the selection of candidate sites for future mutagenesis experiments such as of Glu-180, which may be important for antagonist binding. The interactions of conserved residues of the DRY motif in TM-III and the NPxxY motif in TM-VII in the alpha1A adrenoceptor complexes were also examined. The major differences lie in the role of residue Arg-124, which for the agonist complexes formed additional interactions with residues of intracellular loops I and II. Alternatively, for the antagonist complexes, additional interactions were observed for Asn-322 with residues of TM-II and TM-VII.  相似文献   

8.
The mammalian exocrine pancreas secretes a near-isosmotic fluid over a wide osmolarity range. The role of aquaporin (AQP) water channels in this process is now becoming clearer. AQP8 water channels, which were initially cloned from rat pancreas, are expressed at the apical membrane of pancreatic acinar cells and contribute to their osmotic permeability. However, the acinar cells secrete relatively little fluid and there is no obvious defect in pancreatic function in AQP8 knockout mice. Most of the fluid secreted by the pancreas is generated by ductal epithelial cells, which comprise only a small fraction of the gland mass. In the human pancreas, secretion occurs mainly in the intercalated ducts, where the epithelial cells express abundant AQP1 and AQP5 at the apical membrane and AQP1 alone at the basolateral membrane. In the rat and mouse, fluid secretion occurs mainly in the interlobular ducts where AQP1 and AQP5 are again co-localized at the apical membrane but appear to be expressed at relatively low levels. Nonetheless, the transepithelial osmotic permeability of rat interlobular ducts is sufficient to support near-isosmotic fluid secretion at observed rates. Furthermore, apical, but not basolateral, application of Hg2+ significantly reduces the transepithelial osmotic permeability, suggesting that apical AQP1 and AQP5 may contribute significantly to fluid secretion. The apparently normal fluid output of the pancreas in AQP1 knockout mice may reflect the presence of AQP5 at the apical membrane.  相似文献   

9.
The water channel protein aquaporin-1 (AQP1) has two asparagine-proline-alanine (NPA) repeats on loops B and E. From recent structural information, these loops are on opposite sides of the membrane and meet to form a pore. We replaced the mercury-sensitive residue cysteine 189 in AQP1 by serine to obtain a mercury-insensitive template (C189S). Subsequently, we substituted three consecutive cysteines for residues 71-73 near the first NPA repeat (76-78) in intracellular loop B, and investigated whether they were accessible to extracellular mercurials. AQP1 and its mutants were expressed in Xenopus laevis oocytes, and the osmotic permeability (P(f)) of the oocytes was determined. C189S had wild-type P(f) but was not sensitive to HgCl(2). Expression of all three C189S cysteine mutants resulted in increased P(f), and all three mutants regained mercurial sensitivity. These results, especially the inhibitions by the large mercurial p-chloromercunbenzene-sulfonic acid (pCMBS) ( approximately 6A wide), suggest that residues 71-73 at the pore are accessible to extracellular mercurials. A 30-ps molecular dynamics simulation (at 300 K) starting with crystallographic coordinates of AQP1 showed that the width of the pore bottleneck (between Connolly surfaces) can vary (w(avg) = 3.9 A, sigma = 0.75; hydrated AQP1). Thus, although the pore width would be > or = 6 A only for 0.0026 of the time, this might suffice for pCMBS to reach residues 71-73. Alternative explanations such as passage of pCMBS across the AQP1 tetramer center or other unspecified transmembrane pathways cannot be excluded.  相似文献   

10.
Members of the aquaporin (AQP) water channel family are widely distributed in various tissues and contribute to the water permeability of epithelial and endothelial cells. Currently 11 members of the AQP family (AQP0-10) have been reported in mammals. Here we report the identification of AQP12, which we found by performing a BLAST program search. Northern blot analysis revealed that AQP12 was specifically expressed in the pancreas. Further analysis by in situ hybridization and RT-PCR studies showed that AQP12 was selectively localized in the acinar cells of the pancreas. To analyze the cellular localization and function of AQP12, we expressed AQP12 in Xenopus oocytes and cultured mammalian cells. Immunocytochemistry revealed that AQP12 was not targeted to the plasma membrane. The selective localization of AQP12 in pancreatic acinar cells and possibly in the intracellular organelles suggests a role of AQP12 in digestive enzyme secretion such as maturation and exocytosis of secretory granules.  相似文献   

11.
Summary A new program for molecular dynamics (MD) simulation and energy refinement of biological macromolecules, OPAL, is introduced. Combined with the supporting program TRAJEC for the analysis of MD trajectories, OPAL affords high efficiency and flexibility for work with diferent force fields, and offers a user-friendly interface and extensive trajectory analysis capabilities. Salient features are computational speeds of up to 1.5 GFlops on vector supercomputers such as the NEC SX-3, ellipsoidal boundaries to reduce the system size for studies in explicit solvents, and natural treatment of the hydrostatic pressure. Practical applications of OPAL are illustrated with MD simulations of pure water, energy minimization of the NMR structure of the mixed disulfide of a mutant E. coli glutaredoxin with glutathione in different solvent models, and MD simulations of a small protein, pheromone Er-2, using either instantaneous or time-averaged NMR restraints, or no restraints.Abbreviations D diffusion constant in cm2/s - Er-2 pheromone 2 from Euplotes raikovi - GFlop one billion floating point operations per second - Grx(C14S)-SG mixed disulfide between a mutant E. coli glutaredoxin, with Cys14 replaced by Ser, and glutathione - MD molecular dynamics - NOE nuclear Overhauser enhancement - rmsd root-mean-square deviation - density in g/cm3  相似文献   

12.
Aquaporin family comprises of transmembrane channels that are specialized in conducting water and certain small, uncharged molecules across cell membranes. Essential roles of aquaporins in various physiological and pathophysiological conditions have attracted great scientific interest. Pioneering structural studies on aquaporins have almost solved the basic question of mechanism of selective water transport through these channels. Another important structural aspect of aquaporins which seeks attention is that how the flow of water through the channel is regulated by the mechanism of gating. Aquaporins are also regulated at the protein level, i.e. by trafficking which includes changes in their expression levels in the membrane. Availability of high resolution structures along with numerous molecular dynamics simulation studies have helped to gain an understanding of the structural mechanisms by which water flux through aquaporins is controlled. This review will summarize the highlights regarding structural features of aquaporins, mechanisms governing water permeation, proton exclusion and substrate specificity, and describe the structural insights into the mechanisms of aquaporin gating whereby water conduction is regulated by post translational modifications, such as phosphorylation.  相似文献   

13.
Molecular dynamics simulations have become a popular and powerful technique to study lipids and membrane proteins. We present some general questions and issues that should be considered prior to embarking on molecular dynamics simulation studies of membrane proteins and review common simulation methods. We suggest a practical approach to setting up and running simulations of membrane proteins, and introduce two new (related) methods to embed a protein in a lipid bilayer. Both methods rely on placing lipids and the protein(s) on a widely spaced grid and then 'shrinking' the grid until the bilayer with the protein has the desired density, with lipids neatly packed around the protein. When starting from a grid based on a single lipid structure, or several potentially different lipid structures (method 1), the bilayer will start well-packed but requires more equilibration. When starting from a pre-equilibrated bilayer, either pure or mixed, most of the structure of the bilayer stays intact, reducing equilibration time (method 2). The main advantages of these methods are that they minimize equilibration time and can be almost completely automated, nearly eliminating one time consuming step in MD simulations of membrane proteins.  相似文献   

14.
The structure and dynamics of infinitely diluted aqueous amide solutions is studied for 13 compounds in the NVT ensemble using classical molecular dynamics simulations. The aim of this work is to provide valuable insights into the effect of amides on liquid water properties in order to understand the amides role in the kinetic inhibition of clathrate hydrate formation in natural gas mixtures. The OPLS-AA forcefield is used to describe the amides, with parameters obtained through fitting of computed B3LYP/6-311++g* * data when not available in the literature, and the SPC-E model is applied for water molecules. Structural properties of the solutions are analyzed via calculated radial distribution functions and dynamic properties are studied with the computed mean square displacements and velocity autocorrelation functions. Most of the studied compounds show a remarkable structuring effect on the surrounding water with strong interactions resulting from hydrogen bonding between solute and solvent molecules. Hydrophobic and hydrophilic synergistic effects influence the amide–water interaction and the properties of the water solvation shells around amides.  相似文献   

15.
Periplasmic binding proteins from Gram-negative bacteria possess a common architecture, comprised of two domains linked by a hinge region, a fold which they share with the neurotransmitter-binding domains of ionotropic glutamate receptors (GluRs). Glutamine-binding protein (GlnBP) is one such protein, whose crystal structure has been solved in both open and closed forms. Multi-nanosecond molecular dynamics simulations have been used to explore motions about the hinge region and how they are altered by ligand binding. Glutamine binding is seen to significantly reduce inter-domain motions about the hinge region. Essential dynamics analysis of inter-domain motion revealed the presence of both hinge-bending and twisting motions, as has been reported for a related sugar-binding protein. Significantly, the influence of the ligand on GlnBP dynamics is similar to that previously observed in simulations of rat glutamate receptor (GluR2) ligand-binding domain. The essential dynamics analysis of GlnBP also revealed a third class of motion which suggests a mechanism for signal transmission in GluRs.  相似文献   

16.
The results of full-atom molecular dynamics simulations of the transmembrane domains (TMDs) of both native, and Glu664-mutant (either protonated or unprotonated) Neu in an explicit fully hydrated dimyristoylphosphatidylcholine (DMPC) lipid bilayer are presented. For the native TMD peptide, a 10.05 ns trajectory was collected, while for the mutant TMD peptides 5.05 ns trajectories were collected for each. The peptides in all three simulations display stable predominantly -helical hydrogen bonding throughout the trajectories. The only significant exception occurs near the C-terminal end of the native and unprotonated mutant TMDs just outside the level of the lipid headgroups, where -helical hydrogen bonding develops, introducing a kink in the backbone structure. However, there is no indication of the formation of a bulge within the hydrophobic region of either native or mutant peptides. Over the course of the simulation of the mutant peptide, it is found that a significant number of water molecules penetrate the hydrophobic region of the surrounding lipid molecules, effectively hydrating Glu664. If the energy cost of such water penetration is significant enough, this may be a factor in the enhanced dimerization affinity of Glu664-mutant Neu.  相似文献   

17.
The inhibition of water permeation through aquaporins by ligands of pharmaceutical compounds is considered as a method to control the cell lifetime. The inhibition of aquaporin 1 (AQP1) by bacopaside-I and torsemide, was explored and its atomistic nature was elucidated by molecular docking and molecular dynamics (MD) simulation collectively along with Poisson-Boltzmann surface area (PBSA) method. Docking results revealed that torsemide has a lower level of docking energy in comparison with bacopaside-I at the cytoplasmic side. Furthermore, the effect of steric constraints on water permeation was accentuated. Bacopaside-I inhibits the channel properly due to the strong interaction with the channel and larger spatial volume, whereas torsemide blocks the cytoplasmic side of the channel imperfectly. The most probable active sites of AQP1 for the formation of hydrogen bonds between the inhibitor and the channel were identified by numerical analysis of the bonds. Eventually, free energy assessments indicate that binding of both inhibitors is favorable in complex with AQP1, and van der Waals interaction has an important contribution in stabilizing the complexes.  相似文献   

18.
In the template-assistance model, normal prion protein (PrPC), the pathogenic cause of prion diseases such as Creutzfeldt-Jakob in human, bovine spongiform encephalopathy in cow, and scrapie in sheep, converts to infectious prion (PrPSc) through an autocatalytic process triggered by a transient interaction between PrPC and PrPSc. Conventional studies suggest the S1-H1-S2 region in PrPC to be the template of S1-S2 β-sheet in PrPSc, and the conformational conversion of PrPC into PrPSc may involve an unfolding of H1 in PrPC and its refolding into the β-sheet in PrPSc. Here we conduct a series of simulation experiments to test the idea of transient interaction of the template-assistance model. We find that the integrity of H1 in PrPC is vulnerable to a transient interaction that alters the native dihedral angles at residue Asn143, which connects the S1 flank to H1, but not to interactions that alter the internal structure of the S1 flank, nor to those that alter the relative orientation between H1 and the S2 flank.  相似文献   

19.
Ball LE  Garland DL  Crouch RK  Schey KL 《Biochemistry》2004,43(30):9856-9865
Because of the lack of protein turnover in fiber cells of the ocular lens, Aquaporin 0 (AQP0), the most abundant membrane protein in the lens, undergoes extensive post-translational modification with fiber cell age. To map the distribution of modified forms of AQP0 within the lens, normal human lenses ranging in age from 34 to 38 were concentrically dissected into several cortical and nuclear sections. Membrane proteins still embedded in the membranes were digested with trypsin, and the resulting C-terminal peptides of AQP0 were analyzed by HPLC tandem mass spectrometry, permitting the identification of modifications and estimation of their abundance. Consistent with earlier reports, the major phosphorylation site was Ser 235, and the major sites of backbone cleavage occurred at residues 246 and 259. New findings suggest that cleavage at these sites may be a result of nonenzymatic truncation at asparagine residues. In addition, this approach revealed previously undetected sites of truncation at residues 249, 260, 261, and 262; phosphorylation at Ser 231 and to a lower extent at Ser 229; and racemization/isomerization of l-Asp 243 to d-Asp and d-iso-Asp. The spatial distribution of C-terminally modified AQP0 within the lens indicated an increase in truncation and racemization/isomerization with fiber cell age, whereas the level of Ser 235 phosphorylation increased from the outer to inner cortex but decreased in the nucleus. Furthermore, the remarkably similar pattern and distribution of truncation products from lenses from three donors suggest specific temporal mechanisms for the modification of AQP0.  相似文献   

20.
GluR0 is a prokaryotic homologue of mammalian glutamate receptors that forms glutamate-activated, potassium-selective ion channels. The topology of its transmembrane (TM) domain is similar to that of simple potassium channels such as KcsA. Two plausible alignments of the sequence of the TM domain of GluR0 with KcsA are possible, differing in the region of the P helix. We have constructed homology models based on both alignments and evaluated them using 6 ns duration molecular dynamics simulations in a membrane-mimetic environment. One model, in which an insertion in GluR0 relative to KcsA is located in the loop between the M1 and P helices, is preferred on the basis of lower structural drift and maintenance of the P helix conformation during simulation. This model also exhibits inter-subunit salt bridges that help to stabilise the TM domain tetramer. During the simulation, concerted K(+) ion-water movement along the selectivity filter is observed, as is the case in simulations of KcsA. K(+) ion exit from the central cavity is associated with opening of the hydrophobic gate formed by the C-termini of the M2 helices. In the intact receptor the opening of this gate will be controlled by interactions with the extramembranous ligand-binding domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号