首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms that account for acetylcholine (ACh)-induced responses of skeletal muscle arterioles of mice lacking endothelial nitric oxide (NO) synthase (eNOS-KO) were investigated. Isolated, cannulated, and pressurized arterioles of gracilis muscle from male eNOS-KO (74.1 +/- 2.3 microm) and wild-type (WT, 87.2 +/- 2.1 microm) mice developed spontaneous tone accounting for 63 and 61% of their passive diameter (116.8 +/- 3.4 vs. 143.2 +/- 2.8 microm, respectively) and dilated dose-dependently to ACh (10(-9)-10(-7) M). These dilations were significantly smaller in vessels of eNOS-KO compared with WT mice (29.2 +/- 2.0 microm vs. 46.3 +/- 2.1 microm, at maximum concentration) but responses to the NO donor, sodium nitrite (NaNO(2), 10(-6)-3 x 10(-5) M), were comparable in the vessels of the two strains. N(G)-nitro-L-arginine (L-NNA, 10(-4) M), an inhibitor of eNOS, inhibited ACh-induced dilations by 60-90% in arterioles of WT mice but did not affect responses in those of eNOS-KO mice. In arterioles of eNOS-KO mice, dilations to ACh were not affected by indomethacin but were essentially abolished by inhibitors of cytochrome P-450, clotrimazole (CTZ, 2 x 10(-6) M) or miconazole (MCZ, 2 x 10(-6) M), as well as by either high K(+) (40 mM) or iberiotoxin [10(-7) M, a blocker of Ca(2+)-dependent K(+) channels (K(Ca) channels)]. On the other hand, in WT arterioles CTZ or MCZ inhibited ACh-induced dilations only by approximately 10% and only in the presence of L-NNA. These results indicate that in arterioles of eNOS-KO mice, endothelium-derived hyperpolarizing factor (EDHF), synthesized via cytochrome P-450, accounts entirely for the mediation of ACh-induced dilation via an increase in K(Ca)-channel activity. In contrast, in arterioles of WT mice, endothelium-derived NO predominantly mediates ACh-induced dilation in which participation of EDHF becomes apparent only after inhibition of NO synthesis.  相似文献   

2.
The purpose of this study was to test the hypothesis that endothelium-dependent dilation is impaired in soleus resistance arteries from hindlimb-unweighted (HLU) rats. Male Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 14) or weight-bearing control (Con, n = 14) conditions for 14 days. After the 14-day treatment period, soleus first-order (1A) arterioles were isolated and cannulated with micropipettes to assess vasodilator responses to an endothelium-dependent dilator, ACh (10(-9)-10(-4) M), and an endothelium-independent dilator, sodium nitroprusside (SNP, 10(-9)-10(-4) M). Arterioles from HLU rats were smaller than Con arterioles (maximal passive diameter = 140 +/- 4 and 121 +/- 4 microm in Con and HLU, respectively) but developed similar spontaneous myogenic tone (43 +/- 3 and 45 +/- 3% in Con and HLU, respectively). Arteries from Con and HLU rats dilated in response to increasing doses of ACh, but dilation was impaired in arterioles from HLU rats (P = 0.03), as was maximal dilation to ACh (85 +/- 4 and 65 +/- 4% possible dilation in Con and HLU, respectively). Inhibition of nitric oxide (NO) synthase (NOS) with N(omega)-nitro-L-arginine (300 microM) reduced ACh dilation by approximately 40% in arterioles from Con rats and eliminated dilation in arterioles from HLU rats. The cyclooxygenase inhibitor indomethacin (50 microM) did not significantly alter dilation to ACh in either group. Treatment with N(omega)-nitro-L-arginine + indomethacin eliminated all ACh dilation in Con and HLU rats. Dilation to sodium nitroprusside was not different between groups (P = 0.98). To determine whether HLU decreased expression of endothelial cell NOS (ecNOS), mRNA and protein levels were measured in single arterioles with RT-PCR and immunoblot analysis. The ecNOS mRNA and protein expression was significantly lower in arterioles from HLU rats than in Con arterioles (20 and 65%, respectively). Collectively, these data indicate that HLU impairs ACh dilation in soleus 1A arterioles, in part because of alterations in the NO pathway.  相似文献   

3.
Vasomotor reactions upon focal stimulation of arterioles have been shown to be conducted along the vascular wall. Such a conduction, which is assumed to reflect the spread of electrical signals, may contribute to coordination of responses within a vascular segment. We aimed to identify which endothelial autacoid(s) act as mediators of the local and conducted dilator responses, respectively. To this end, arterioles in the hamster cremaster microcirculation were locally stimulated with endothelium-dependent [acetylcholine (ACh)] or endothelium-independent dilators [sodium nitroprusside (SNP)], and the resulting changes in diameter were measured using a videomicroscopy technique at the site of application and up to 1.4 mm upstream at distant sites. Experiments were also performed after blockade of nitric oxide (NO) synthase, cyclooxygenase, P-450 monooxygenase, or K(+) channels. Dilations upon ACh (71 +/- 3%) were conducted rapidly (<1 s) to upstream sites (at 1.4 mm: 37 +/- 5%). Although the NO donor SNP induced a similar local dilation (71 +/- 7%), this response was not conducted. Maximal amplitudes of ACh-induced dilations were not attenuated after inhibition of NO synthase and cyclooxygenase at the local and remote sites. However, additional treatment with a P-450 monooxygenase blocker (sulfaphenazole) strongly attenuated the local response (from 62 +/- 9 to 17 +/- 5%) and abrogated dilations at distant sites (at 0.67 mm: from 23 +/- 4% to 4 +/- 3%). Likewise, 17-octadecynoic acid strongly attenuated local and remote responses. Blockers of Ca(2+)-dependent K(+) channels (charybdotoxin or iberiotoxin) attenuated dilations at the local and remote sites after focal application at the ACh stimulation site. In marked contrast, treatment of the upstream site with these blockers was without any effect. We conclude that upon local stimulation with ACh, a cytochrome P-450 monooxygenase product is generated that induces local dilation via the activation of Ca(2+)-dependent K(+) channels and initiates conduction of the dilation. In contrast to the local site, neither activation of these K(+) channels nor the synthesis of NO or prostaglandins is necessary to dilate the arterioles at remote, distant sites. This suggests that endothelium-derived hyperpolarizing factor serves as an important mediator to initiate conducted dilations and, by doing so, may act as a key player in the coordination of arteriolar behavior in the microcirculatory network.  相似文献   

4.
In skeletal muscle arterioles, the pathway leading to non-nitric oxide (NO), non-prostaglandin-mediated endothelium-derived hyperpolarizing factor (EDHF)-type dilations is not well characterized. To elucidate some of the steps in this process, simultaneous changes in endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) and the diameter of rat gracilis muscle arterioles (approximately 60 microm) to acetylcholine (ACh) were measured by fura 2 microfluorimetry (in the absence of NO and prostaglandins). ACh elicited rapid increases in endothelial [Ca(2+)](i) (101 +/- 7%), followed by substantial dilations (73 +/- 2%, coupling time: 1.3 +/- 0.2 s) that were prevented by endothelial loading of an intracellular Ca(2+) chelator [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid]. Arteriolar dilations to ACh were also inhibited by intraluminal administration of the Ca(2+)-activated K(+) (K(Ca)) channel blockers charybdotoxin plus apamin or by palmitoleic acid, an uncoupler of myoendothelial gap junctions without affecting changes in endothelial [Ca(2+)](i). The presence of large conductance K(Ca) channels on arteriolar endothelial cells was demonstrated with immunohistochemisty. We propose that in skeletal muscle arterioles, EDHF-type mediation is evoked by an increase in endothelial [Ca(2+)](i), which by activating endothelial K(Ca) channels elicits hyperpolarization that is conducted via myoendothelial gap junctions to the smooth muscle resulting in decreases in [Ca(2+)](i) and consequently dilation.  相似文献   

5.
Type 2 diabetes mellitus (T2-DM) markedly increases the incidence of ischemic heart disease (IHD) and, consequently, mortality. However, the underlying mechanisms leading to IHD in T2-DM are not completely understood. We hypothesized that in T2-DM the regulation of coronary microvascular resistance by local mechanisms is altered. Thus, in coronary arterioles (diameter: approximately 80 microm) isolated from male mice with T2-DM (C57BL/KsJ-db/db) and control littermates, responses to changes in intraluminal pressure, flow, and agonists with known mechanisms of action were studied. Increases in pressure (from 20 to 120 mmHg) resulted in similar myogenic responses of coronary arterioles of control and db/db mice, whereas dilations in response to cumulative concentrations of ACh and the nitric oxide (NO) donor NONOate were significantly decreased compared with those of control vessels. On the other hand, responses to adenosine were not different between vessels of control and db/db mice. Increases in flow (0-20 microl/min) resulted in dilations of control vessels (maximum: 38 +/- 4%) that were inhibited by the NO synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME). In contrast, arterioles of db/db mice exhibited greatly reduced dilations to flow (maximum: 4 +/- 6%) that were unaffected by L-NAME. In carotid arteries of db/db mice, superoxide dismutase (SOD)-sensitive, enhanced superoxide production was detected by dihydroethydine staining and lucigenin enhanced chemiluminescence. Correspondingly, intraluminal administration of SOD significantly augmented flow-, ACh-, and NONOate-induced dilations of diabetic arterioles, and then flow- and ACh-induced responses could be inhibited by L-NAME. Collectively, these findings suggest that in T2-DM, due to an enhanced superoxide production, NO mediation of agonist- and flow-induced dilations of coronary arterioles is reduced. This alteration in the regulation of coronary microvascular resistance may contribute to the development of IHD in T2-DM.  相似文献   

6.
We tested the hypothesis that age-related endothelial dysfunction in rat soleus muscle feed arteries (SFA) is mediated in part by NAD(P)H oxidase-derived reactive oxygen species (ROS). SFA from young (4 mo) and old (24 mo) Fischer 344 rats were isolated and cannulated for examination of vasodilator responses to flow and acetylcholine (ACh) in the absence or presence of a superoxide anion (O(2)(-)) scavenger (Tempol; 100 μM) or an NAD(P)H oxidase inhibitor (apocynin; 100 μM). In the absence of inhibitors, flow- and ACh-induced dilations were attenuated in SFA from old rats compared with young rats. Tempol and apocynin improved flow- and ACh-induced dilation in SFA from old rats. In SFA from young rats, Tempol and apocynin had no effect on flow-induced dilation, and apocynin attenuated ACh-induced dilation. To determine the role of hydrogen peroxide (H(2)O(2)), dilator responses were assessed in the absence and presence of catalase (100 U/ml) or PEG-catalase (200 U/ml). Neither H(2)O(2) scavenger altered flow-induced dilation, whereas both H(2)O(2) scavengers blunted ACh-induced dilation in SFA from young rats. In old SFA, catalase improved flow-induced dilation whereas PEG-catalase improved ACh-induced dilation. Compared with young SFA, in response to exogenous H(2)O(2) and NADPH, old rats exhibited blunted dilation and constriction, respectively. Immunoblot analysis revealed that the NAD(P)H oxidase subunit gp91phox protein content was greater in old SFA compared with young. These results suggest that NAD(P)H oxidase-derived reactive oxygen species contribute to impaired endothelium-dependent dilation in old SFA.  相似文献   

7.
We tested the hypothesis that short-term treatment of mice with Type 2 diabetes mellitus (DM) with rosiglitazone (ROSI), an agonist of peroxisome proliferator-activated receptor-gamma, ameliorates the impaired coronary arteriolar dilation by reducing oxidative stress via a mechanism unrelated to its effect on hyperglycemia and hyperinsulinemia. Control and Type 2 DM (db/db) mice were treated with ROSI (3 mg x kg(-1) x day(-1)) for 7 days, which did not significantly affect their serum concentration of glucose and insulin. Compared with controls, in db/db mice serum levels of 8-isoprostane and dihydroethydine-detectable superoxide production in carotid arteries were significantly elevated and were reduced by ROSI treatment. In coronary arterioles (diameter, approximately 80 microm) isolated from db/db mice, the reduced dilations to ACh, the nitric oxide (NO) donor NONOate, and increases in flow were significantly augmented either by in vitro administration of apocynin, an inhibitor of NAD(P)H-oxidase, or by in vivo ROSI treatment, responses that were then significantly reduced by the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester. In aortas of db/db mice, activity of SOD and catalase was reduced, whereas NAD(P)H oxidase activity was enhanced. ROSI treatment enhanced catalase and reduced NAD(P)H oxidase activity but did not affect the activity of SOD. These findings suggest that ROSI treatment enhances NO mediation of coronary arteriolar dilations due to the reduction of vascular NAD(P)H oxidase-derived superoxide production and enhancement of catalase activity. Thus, in addition to the previously revealed beneficial metabolic effects, the antioxidant action of rosiglitazone may protect coronary arteriolar function in Type 2 DM.  相似文献   

8.
In skeletal muscle arterioles of normotensive rats fed a high salt diet, the bioavailability of endothelium-derived nitric oxide (NO) is reduced by superoxide anion. Because the impact of dietary salt on resistance vessels in other species is largely unknown, we investigated endothelium-dependent dilation and oxidant activity in spinotrapezius muscle arterioles of C57BL/6J mice fed normal (0.45%, NS) or high salt (7%, HS) diets for 4 wk. Mean arterial pressure in HS mice was not different from that in NS mice, but the magnitude of arteriolar dilation in response to different levels of ACh was 42-57% smaller in HS mice than in NS mice. Inhibition of nitric oxide synthase (NOS) with N(G) monomethyl L-arginine (L-NMMA) significantly reduced resting diameters and reduced responses to ACh (by 45-63%) in NS mice but not in HS mice. Arteriolar wall oxidant activity, as assessed by tetranitroblue tetrazolium reduction or hydroethidine oxidation, was greater in HS mice than in NS mice. Exposure to the superoxide scavenger 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) + catalase reduced this oxidant activity to normal and restored normal arteriolar responsiveness to ACh in HS mice but had no effect in NS mice. L-NMMA also restored arteriolar oxidant activity to normal in HS mice. ACh further increased arteriolar oxidant activity in HS mice but not in NS mice, and this effect was prevented with L-NMMA. These data suggest that a high salt diet promotes increased generation of superoxide anion from NOS in the murine skeletal muscle microcirculation, thus impairing endothelium-dependent dilation through reduced NO bioavailability.  相似文献   

9.
We hypothesized that transient high-glucose concentration interferes with mediation by nitric oxide (NO) of flow-induced dilation (FID) of arterioles due to enhanced production of superoxide. In isolated, pressurized (80 mmHg) rat gracilis muscle arterioles ( approximately 130 microm) after transient high-glucose treatment (tHG; incubation with 30 mM glucose for 1 h), FID was reduced (maximum: control, 38 +/- 4%; after tHG, 17 +/- 3%), which was not further diminished by the NO synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME; 18 +/- 2%). Correspondingly, an enhanced polyethylene-glycol-SOD (PEG-SOD)-sensitive superoxide production was detected after tHG in carotid arteries by dihydroethydine (DHE) staining. Presence of PEG-SOD during tHG prevented the reduction of FID (41 +/- 3%), which could be inhibited by l-NAME (20 +/- 4%). Administration of PEG-SOD after tHG did not prevent the reduction of FID (22 +/- 3%). Sepiapterin, a precursor of the NO synthase cofactor tetrahydrobiopterin (BH(4)), administered during tHG did not prevent the reduction of FID (maximum, 15 +/- 5%); however, it restored FID when administered after tHG (32 +/- 4%). Furthermore, inhibition of either glycolysis by 2-deoxyglucose or mitochondrial complex II by 2-thenoyltrifluoroacetone reduced the tHG-induced DHE-detectable enhanced superoxide production in carotid arteries and prevented FID reduction in arterioles (39 +/- 5 and 35 +/- 2%). Collectively, these findings suggest that in skeletal muscle arterioles, a transient elevation of glucose via its increased metabolism, elicits enhanced production of superoxide, which decreases the bioavailability of NO and the level of the NOS cofactor BH(4), resulting in a reduction of FID mediated by NO.  相似文献   

10.
The impact of obesity on nitric oxide (NO)-mediated coronary microvascular responses is poorly understood. Thus NO-mediated vasomotor responses were investigated in pressurized coronary arterioles ( approximately 100 microm) isolated from lean (on normal diet) and obese (fed with 60% of saturated fat) rats. We found that dilations to acetylcholine (ACh) were not significantly different in obese and lean rats (lean, 83 +/- 4%; and obese, 85 +/- 3% at 1 microM), yet the inhibition of NO synthesis with N(omega)-nitro-l-arginine methyl ester reduced ACh-induced dilations only in vessels of lean controls. The presence of the soluble guanylate cyclase (sGC) inhibitor oxadiazolo-quinoxaline (ODQ) elicited a similar reduction in ACh-induced dilations in the two groups of vessels (lean, 60 +/- 11%; and obese, 57 +/- 3%). Dilations to NO donors, sodium nitroprusside (SNP), and diethylenetriamine (DETA)-NONOate were enhanced in coronary arterioles of obese compared with lean control rats (lean, 63 +/- 6% and 51 +/- 5%; and obese, 78 +/- 5% and 70 +/- 5%, respectively, at 1 microM), whereas dilations to 8-bromo-cGMP were not different in the two groups. In the presence of ODQ, both SNP and DETA-NONOate-induced dilations were reduced to a similar level in lean and obese rats. Moreover, SNP-stimulated cGMP immunoreactivity in coronary arterioles and also cGMP levels in carotid arteries were enhanced in obese rats, whereas the protein expression of endothelial NOS and the sGC beta1-subunit were not different in the two groups. Collectively, these findings suggest that in coronary arterioles of obese rats, the increased activity of sGC leads to an enhanced sensitivity to NO, which may contribute to the maintenance of NO-mediated dilations and coronary perfusion in obesity.  相似文献   

11.
Hyperglycemia increases glucose metabolism via the polyol pathway, which results in elevations of intracellular sorbitol concentration. Thus we hypothesized that elevated level of sorbitol contributes to the development of hyperglycemia-induced dysfunction of microvessels. In isolated, pressurized (80 mmHg) rat gracilis muscle arterioles (approximately 150 microm), high glucose treatment (25 mM) induced reduction in flow-dependent dilation (from maximum of 39 +/- 2% to 15 +/- 1%), which was significantly mitigated by an aldose reductase inhibitor, zopolrestat (maximum 27 +/- 2%). Increasing doses of sorbitol (10(-10)-10(-4) M) elicited dose-dependent constrictions (maximum 22 +/- 3%), which were abolished by endothelium removal, a prostaglandin H(2)/thromboxane A(2) (PGH(2)/TXA(2)) receptor (TP) antagonist SQ-29548, or superoxide dismutase (SOD) plus catalase (CAT). Incubation of arterioles with sorbitol (10(-7) M) reduced flow-dependent dilations (from maximum of 39 +/- 2% to 20 +/- 1.5%), which was not further affected by inhibition of nitric oxide synthase by N(omega)-nitro-l-arginine methyl ester but was prevented by SOD plus CAT and mitigated by SQ-29548. Nitric oxide donor sodium nitroprusside-induced (10(-9)-10(-6) M) dilations were also decreased in a SQ-29548 and SOD plus CAT-reversible manner, whereas adenosine dilations were not affected by sorbitol exposure. Sorbitol significantly increased arterial superoxide production detected by lucigenin-enhanced chemiluminescence, which was inhibited by SOD plus CAT. Sorbitol treatment also increased arterial formation of 3-nitrotyrosine. We suggest that hyperglycemia by elevating intracellular sorbitol induces oxidative stress, which interferes with nitric oxide bioavailability and promotes PGH(2)/TXA(2) release, both of which affect regulation of vasomotor responses of arterioles. Thus increased activity of the polyol pathway may contribute to the development of microvascular dysfunction in diabetes mellitus.  相似文献   

12.
We hypothesized that neutralization of TNF-alpha at the time of reperfusion exerts a salubrious role on endothelial function and reduces the production of reactive oxygen species. We employed a mouse model of myocardial ischemia-reperfusion (I/R, 30 min/90 min) and administered TNF-alpha neutralizing antibodies at the time of reperfusion. I/R elevated TNF-alpha expression (mRNA and protein), whereas administration of anti-TNF-alpha before reperfusion attenuated TNF-alpha expression. We detected TNF-alpha expression in vascular smooth muscle cells, mast cells, and macrophages, but not in the endothelial cells. I/R induced endothelial dysfunction and superoxide production. Administration of anti-TNF-alpha at the onset of reperfusion partially restored nitric oxide-mediated coronary arteriolar dilation and reduced superoxide production. I/R increased the activity of NAD(P)H oxidase and of xanthine oxidase and enhanced the formation of nitrotyrosine residues in untreated mice compared with shams. Administration of anti-TNF-alpha before reperfusion blocked the increase in activity of these enzymes. Inhibition of xanthine oxidase (allopurinol) or NAD(P)H oxidase (apocynin) improved endothelium-dependent dilation and reduced superoxide production in isolated coronary arterioles following I/R. Interestingly, I/R enhanced superoxide generation and reduced endothelial function in neutropenic animals and in mice treated with a neutrophil NAD(P)H oxidase inhibitor, indicating that the effects of TNF-alpha are not through neutrophil activation. We conclude that myocardial ischemia initiates TNF-alpha expression, which induces vascular oxidative stress, independent of neutrophil activation, and leads to coronary endothelial dysfunction.  相似文献   

13.
Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16-20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g (n = 52-56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the K(Ca) blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 μmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors N(ω)-nitro-L-arginine methyl ester (L-NAME; 100 μmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. L-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca(2+)-activated K(+) channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component.  相似文献   

14.
We hypothesized that impaired nitric oxide (NO)-dependent dilation (endothelial dysfunction) in type 2 diabetes results, in part, from elevated production of superoxide (O(2)(*-)) induced by the interaction of advanced glycation end products (AGE)/receptor for AGE (RAGE) and TNF-alpha signaling. We assessed the role of AGE/RAGE and TNF-alpha signaling in endothelial dysfunction in type 2 diabetic (Lepr(db)) mice by evaluation of endothelial function in isolated coronary resistance vessels of normal control (nondiabetic, m Lepr(db)) and diabetic mice. Although dilation of vessels to the endothelium-independent vasodilator sodium nitroprusside (SNP) was not different between diabetic and control mice, dilation to the endothelium-dependent agonist acetylcholine (ACh) was reduced in diabetic vs. control mice. The activation of RAGE with RAGE agonist S100b eliminated SNP-potentiated dilation to ACh in Lepr(db) mice. Administration of a soluble form of RAGE (sRAGE) partially restored dilation in diabetic mice but did not affect dilation in control mice. The expression of RAGE in coronary arterioles was markedly increased in diabetic vs. control mice. We also observed in diabetic mice that augmented RAGE signaling augmented expression of TNF-alpha, because this increase was attenuated by sRAGE or NF-kappaB inhibitor MG132. Protein and mRNA expression of NAD(P)H oxidase subunits including NOX-2, p22(phox), and p40(phox) increased in diabetic compared with control mice. sRAGE significantly inhibited the expression of NAD(P)H oxidase in diabetic mice. These results indicate that AGE/RAGE signaling plays a pivotal role in regulating the production/expression of TNF-alpha, oxidative stress, and endothelial dysfunction in type 2 diabetes.  相似文献   

15.
The present study examined in vitro vasomotor function and expression of enzymes controlling nitric oxide (NO) bioavailability in thoracic aorta of adult male normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) that either remained sedentary (Sed) or performed 6 wk of moderate aerobic exercise training (Ex). Training efficacy was confirmed by elevated maximal activities of both citrate synthase (P = 0.0024) and beta-hydroxyacyl-CoA dehydrogenase (P = 0.0073) in the white gastrocnemius skeletal muscle of Ex vs. Sed rats. Systolic blood pressure was elevated in SHR vs. WKY (P < 0.0001) but was not affected by Ex. Despite enhanced endothelium-dependent relaxation to 10(-8) M ACh in SHR vs. WKY (P = 0.0061), maximal endothelium-dependent relaxation to 10(-4) M ACh was blunted in Sed SHR (48 +/- 12%) vs. Sed WKY (84 +/- 6%, P = 0.0067). Maximal endothelium-dependent relaxation to 10(-4) M ACh was completely restored in Ex SHR (93 +/- 9%) vs. Sed SHR (P = 0.0011). N(omega)-nitro-l-arginine abolished endothelium-dependent relaxation in all groups (P 相似文献   

16.
Selective cerebral vascular dysfunction in Mn-SOD-deficient mice.   总被引:1,自引:0,他引:1  
We tested the hypothesis that the mitochondrial form of superoxide dismutase [manganese superoxide dismutase (Mn-SOD)] protects the cerebral vasculature. Basilar arteries (baseline diameter approximately 140 microm) from mice were isolated, cannulated, and pressurized to measure vessel diameter. In arteries from C57BL/6 mice preconstricted with U-46619, acetylcholine (ACh; an endothelium-dependent vasodilator) produced dilation that was similar in male and female mice and abolished by an inhibitor of nitric oxide synthase. Vasodilation to ACh was not altered in heterozygous male or female Mn-SOD-deficient (Mn-SOD+/-) mice compared with wild-type littermate controls (Mn-SOD+/+). Constriction of the basilar artery to arginine vasopressin, but not KCl or U-46619, was increased in Mn-SOD+/- mice (P<0.05), and this effect was prevented by tempol, a scavenger of superoxide. We also examined responses of cerebral (pial) arterioles (branches of the middle cerebral artery, control diameter approximately 30 microm) to ACh in anesthetized mice using a cranial window. Responses to ACh, but not nitroprusside (an endothelium-independent agonist), were reduced (P<0.05) in cerebral arterioles in Mn-SOD+/- mice, and this effect was prevented by tempol. Thus these are the first data on the role of Mn-SOD in cerebral circulation. In the basilar artery, ACh produced nitric oxide-mediated dilation that was similar in male and female mice. Under normal conditions in cerebral arteries, responses to ACh were not altered but constrictor responses were selectively enhanced in Mn-SOD+/- mice. In the cerebral microcirculation, there was superoxide-mediated impairment of responses to ACh.  相似文献   

17.
We aimed to test the hypothesis that an enhanced level of reactive oxygen species (ROS) is primarily responsible for the impairment of nitric oxide (NO)-mediated regulation of arteriolar wall shear stress (WSS) in hyperhomocysteinemia (HHcy). Thus flow/WSS-induced dilations of pressurized gracilis muscle arterioles (basal diameter: approximately 170 microm) isolated from control (serum Hcy: 6 +/- 1 microM), methionine diet-induced HHcy rats (4 wk, serum Hcy: 30 +/- 6 microM), and HHcy rats treated with vitamin C, a known antioxidant (4 wk, 150 mg. kg body wt-1.day-1; serum Hcy: 32 +/- 10 microM), were investigated. In vessels of HHcy rats, increases in intraluminal flow/WSS-induced dilations were converted to constrictions. Constrictions were unaffected by inhibition of NO synthesis by N omega-nitro-L-arginine methyl ester (L-NAME). Vitamin C treatment of HHcy rats reversed the WSS-induced arteriolar constrictions to L-NAME-sensitive dilations but did not affect control responses. Similar changes in responses were obtained for the calcium ionophore A-23187. In addition, diastolic and mean arterial blood pressure and serum 8-isoprostane levels (a marker of in vivo oxidative stress) were significantly elevated in rats with HHcy, changes that were normalized by vitamin C treatment. Taken together, our data show that in chronic HHcy long-term vitamin C treatment, by decreasing oxidative stress in vivo, enhanced NO bioavailability, restored the regulation of shear stress in arterioles, and normalized systemic blood pressure. Thus our study provides evidence that oxidative stress is an important in vivo mechanism that is primarily responsible for the development of endothelial dysregulation of WSS in HHcy.  相似文献   

18.
Vascular tissues express heme oxygenase (HO), which metabolizes heme to form carbon monoxide (CO). Heme-derived CO inhibits nitric oxide synthase and promotes endothelium-dependent vasoconstriction. After 4 wk of high-salt diet, Dahl salt-sensitive (Dahl-S) rats display hypertension, increased vascular HO-1 expression, and attenuated vasodilator responses to ACh that can be completely restored by acute treatment with an inhibitor of HO. In this study, we examined the temporal development of HO-mediated endothelial dysfunction in isolated pressurized first-order gracilis muscle arterioles, identified the HO product responsible, and studied the blood pressure effects of HO inhibition in Dahl-S rats on a high-salt diet. Male Dahl-S rats (5-6 wk) were placed on high-salt (8% NaCl) or low-salt (0.3% NaCl) diets for 0-4 wk. Blood pressure increased gradually, and responses to an endothelium-dependent vasodilator, ACh, decreased gradually with the length of high-salt diet. Flow-induced dilation was abolished in hypertensive Dahl-S rats. Acute in vitro pretreatment with an inhibitor of HO, chromium mesoporphyrin (CrMP), restored endothelium-dependent vasodilation and abolished the differences between groups. The HO product CO prevented the restoration of endothelium-dependent dilation by CrMP. Furthermore, administration of an HO inhibitor lowered blood pressure in Dahl-S rats with salt-induced hypertension but did not do so in low-salt control rats. These results suggest that hypertension and HO-mediated endothelial dysfunction develop gradually and simultaneously in Dahl-S rats on high-salt diets. They also suggest that HO-derived CO underlies the impaired endothelial dysfunction and contributes to hypertension in Dahl-S rats on high-salt diets.  相似文献   

19.
Vascular tissues express heme oxygenase, which metabolizes heme to form carbon monoxide (CO). CO promotes relaxation of vascular smooth muscle but also inhibits nitric oxide (NO) formation. This study examines the hypothesis that CO promotes endothelium- and NO synthase-dependent vasoconstriction of isolated arterioles. Studies were conducted on pressurized first-order gracilis muscle arterioles isolated from anesthetized male Sprague-Dawley rats. Exogenous CO, as well as a heme precursor, delta-aminolevulinic acid (delta-ALA), constricted arterioles with intact endothelium pretreated with phenylephrine; these effects were abolished by removal of the endothelium. CO- and delta-ALA-induced vasoconstrictions were converted to dilations by pretreatment with an inhibitor of NO synthase, Nomega-nitro-l-arginine methyl ester, or with Nomega-nitro-l-arginine methyl ester and an NO donor, sodium nitroprusside. Furthermore, CO-induced vasoconstriction was prevented by pretreatment with the NO synthase substrate l-arginine. This study shows that exogenous, as well as endogenously formed, CO can promote endothelium-dependent vasoconstriction in isolated gracilis muscle arterioles. Because CO-induced vasoconstriction is abolished by NO synthase blockade and by l-arginine, CO most likely promotes endothelium-dependent vasoconstriction by inhibiting endothelial NO formation.  相似文献   

20.
Previous studies from this laboratory suggest that during maturation, rapid microvascular growth is accompanied by changes in the mechanisms responsible for regulation of tissue blood flow. To further define these changes, we studied isolated gracilis muscle arterioles from weanling ( approximately 25 days) and juvenile ( approximately 44 days) Sprague-Dawley rats to test the hypothesis that endothelial mechanisms for the control of arteriolar tone are altered with growth. Responses to the endothelium-dependent dilator acetylcholine (ACh) were greater in weanling arterioles (WA) than in juvenile arterioles (JA), whereas there were no consistent differences between age groups in arteriolar responses to other endothelium-dependent agonists (A-23187, vascular endothelial growth factor, and simvastatin). Inhibition of nitric oxide synthase (NOS) with N(omega)-nitro-l-arginine methyl ester (l-NAME) attenuated ACh-induced dilation in JA but not in WA. In JA, combined inhibition of NOS and cyclooxygenase (with indomethacin) reduced the dilator responses to ACh and simvastatin by approximately 90% and approximately 70%, respectively, but had no effect in WA. Cytochrome P450 epoxygenase inhibition [with 2-(propargyloxyphenyl) hexanoic acid] had no effect on responses to ACh or simvastatin in either age group. Inhibition of Ca(2+)-activated or ATP-dependent potassium channels (with tetraethylammonium or glibenclamide, respectively) reduced these arteriolar responses in JA but not those in WA. These findings suggest that in fully grown microvascular networks, endothelium-dependent arteriolar dilation is mediated by the combined release of endothelial nitric oxide and vasodilator prostanoids, and in part through activation of Ca(2+)-activated and ATP-dependent potassium channels. However, during earlier microvascular growth, this dilation is mediated by other factors yet to be identified. This may have significant implications for the regulation of tissue perfusion during microvascular development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号