首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of the aquaporin-4 (AQP4) water channel was systematically studied in the digestive tract of the guinea pig using Western blot and immunofluorescence techniques. The results showed that AQP4 was expressed widely in different segments of the guinea pig digestive tract. AQP4-immunoreactivity was confined to parietal cells in the stomach, and absorptive and glandular epithelial cells of small and large intestine. AQP4 protein was also expressed by enteric glial cells of submucosal and myenteric ganglia and primary nerve trunks. AQP4 was expressed by both type I and type II enteric gliocytes, but not by type III or type IV enteric gliocytes, indicating that enteric gliocytes have a heterogeneous distribution in the gut wall. In addition, different patterns of AQP4 expression in the enteric nervous system of human, guinea pig, rat and mouse colon mucosa were identified: in rat and mouse AQP4 was localised to a small subpopulation of neurons; in the guinea pig AQP4 was localised to enteric glial cells; and in the human colon mucosa, AQP4 was also detected mainly in the glial cells. It has been speculated that AQP4 may be involved in water transport in the gastrointestinal tract. Its role in enteric neurons and glia is unknown, but, by analogy with the brain, AQP4 may be involved in the formation and resolution of edema.  相似文献   

2.
Neuronal membranes from rat dorsal root ganglia provide a mitogenic signal to cultured Schwann cells and it has been suggested this is an important factor in regulating Schwann cell numbers during development. In this study, the influence of enteric neurons on the DNA synthesis of both Schwann cells and enteric glia has been investigated as well as the effect of axonal membrane fractions (axolemma) on enteric glia. The proliferation rate of rat Schwann cells and enteric glia was assessed in culture using [3H]thymidine uptake and autoradiography in combination with immunolabelling to identify cell types. When purified rat Schwann cells were co-cultured with guinea pig enteric neurons, their DNA synthesis rate was reduced compared with control cultures of pure Schwann cells or Schwann cells not close to neurites or neuronal cell bodies. Nevertheless, in accordance with previous findings that sensory neurons stimulate Schwann cell division, these Schwann cells increased their DNA synthesis rate when in contact with neurites from purified guinea pig or adult rat dorsal root ganglion neurons and on exposure to bovine axolemmal fractions. The enteric neurons also suppressed the DNA synthesis of enteric glia in co-cultures of purified enteric neurons and enteric glia, while bovine axolemma stimulated their DNA synthesis. These results indicate that a mitotic inhibitory signal is associated with enteric neurons and can exert its effect on both Schwann cells and enteric glia, and that enteric glia, like Schwann cells, are stimulated to divide by axolemmal fractions. It thus seems possible that during development glial cell numbers in the peripheral nervous system may be controlled by both positive and negative regulators of cell growth.  相似文献   

3.
Fos expression was used to assess whether the proinflammatory cytokine interleukin-1beta (IL-1beta) activated specific, chemically coded neuronal populations in isolated preparations of guinea pig ileum and colon. Whether the effects of IL-1beta were mediated through a prostaglandin pathway and whether IL-1beta induced the expression of cyclooxygenase (COX)-2 was also examined. Single- and double-labeling immunohistochemistry was used after treatment of isolated tissues with IL-1beta (0.1-10 ng/ml). IL-1beta induced Fos expression in enteric neurons and also in enteric glia in the ileum and colon. For enteric neurons, activation was concentration-dependent and sensitive to indomethacin, in both the myenteric and submucosal plexuses in both regions of the gut. The maximum proportion of activated neurons differed between the ileal (approximately 15%) and colonic (approximately 42%) myenteric and ileal (approximately 60%) and colonic (approximately 75%) submucosal plexuses. The majority of neurons activated in the myenteric plexus of the ileum expressed nitric oxide synthase (NOS) or enkephalin immunoreactivity. In the colon, activated myenteric neurons expressed NOS. In the submucosal plexus of both regions of the gut, the majority of activated neurons were vasoactive intestinal polypeptide (VIP) immunoreactive. After treatment with IL-1beta, COX-2 immunoreactivity was detected in the wall of the gut in both neurons and nonneuronal cells. In conclusion, we have found that the proinflammatory cytokine IL-1beta specifically activates certain neurochemically defined neural pathways and that these changes may lead to disturbances in motility observed in the inflamed bowel.  相似文献   

4.
A number of in vitro studies suggest that many important developmental and functional events in the enteric nervous system are regulated by the intracellular signaling enzyme cAMP protein kinase A (PKA). To evaluate the in vivo significance of these observations, a Cre-inducible, dominant-negative, mutant regulatory subunit (RIalphaB) of PKA was activated in enteric neurons by either a Proteolipid protein-Cre transgene or a Hox11L1-Cre "knock-in" allele. In both models, RIalphaB activation resulted consistently in profound distension of the proximal small intestine within 2 weeks after birth. Intestinal transit of radio-opaque tracers was severely retarded in the double-transgenic animals, which died shortly after weaning. In the enteric nervous system, recombination was restricted to neurons as demonstrated by histochemical analysis and confocal microscopic colocalization of a Cre recombinase-dependent reporter gene with the neuronal marker Hu(C/D), in contrast with the glial marker S100. Histochemical analysis of beta-galactosidase expression and acetylcholinesterase activity, as well as neuronal counts, demonstrated that intestinal dysmotility was not associated with obvious malformation of the myenteric plexus. However, inhibition of PKA activity in enteric neurons disrupted the major motor complexes of isolated intestinal segments in vitro. These results provide strong evidence that PKA activity plays a critical role in enteric neurotransmission in vivo, and highlight neuronal PKA or related signaling molecules as potential therapeutic targets in gastrointestinal motility disorders.  相似文献   

5.
Reflex behaviors of the intestine are controlled by the enteric nervous system (ENS). The ENS is an integrative network of neurons and glia in two ganglionated plexuses housed in the gut wall. Enteric neurons and enteric glia are the only cell types within the enteric ganglia. The activity of enteric neurons and glia is responsible for coordinating intestinal functions. This protocol describes methods for observing the activity of neurons and glia within the intact ENS by imaging intracellular calcium (Ca2+) transients with fluorescent indicator dyes. Our technical discussion focuses on methods for Ca2+ imaging in whole-mount preparations of the myenteric plexus from the rodent bowel. Bulk loading of ENS whole-mounts with a high-affinity Ca2+ indicator such as Fluo-4 permits measurements of Ca2+ responses in individual neurons or glial cells. These responses can be evoked repeatedly and reliably, which permits quantitative studies using pharmacological tools. Ca2+ responses in cells of the ENS are recorded using a fluorescence microscope equipped with a cooled charge-coupled device (CCD) camera. Fluorescence measurements obtained using Ca2+ imaging in whole-mount preparations offer a straightforward means of characterizing the mechanisms and potential functional consequences of Ca2+ responses in enteric neurons and glial cells.  相似文献   

6.
Yu Q  Ji R  Gao X  Fu J  Guo W  Song X  Zhao X  Burnstock G  Shi X  He C  Xiang Z 《Cell and tissue research》2011,344(2):227-237
Single- and double-immunostaining techniques were used systematically to study the distribution pattern and neurochemical density of oxytocin-immunoreactive (-ir) neurons in the digestive tract of the guinea pig. Oxytocin immunoreactivity was distributed widely in the guinea pig gastrointestinal tract; 3%, 13%, 17%, 15%, and 10% of ganglion neurons were immunoreactive for oxytocin in the myenteric plexuses of the gastric corpus, jejunum, ileum, proximal colon, and distal colon, respectively, and 36%, 40%, 52%, and 56% of ganglion neurons were immunoreactive for oxytocin in the submucosal plexuses of the jejunum, ileum, proximal colon, and distal colon, respectively. In the myenteric plexus, oxytocin was expressed exclusively in the intrinsic enteric afferent neurons, as identified by calbindin 28 K. In the submucosal plexuses, oxytocin was expressed in non-cholinergic secretomotor neurons, as identified by vasoactive intestinal polypeptide. Oxytocin-ir nerve fibers in the inner circular muscle layer possibly arose from the myenteric oxytocin-ir neurons, and oxytocin-ir nerve fibers in the mucosa possibly arose from both the myenteric and submucosal oxytocin-ir neurons. Thus, oxytocin in the digestive tract might be involved in gastrointestinal tract motility mainly via the regulation of the inner circular muscle and the balance of the absorption and secretion of water and electrolytes.  相似文献   

7.
8.
The enteric nervous system is a vast network of neurons and glia running the length of the gastrointestinal tract that functionally controls gastrointestinal motility. A procedure for the isolation and culture of a mixed population of neurons and glia from the myenteric plexus is described. The primary cultures can be maintained for over 7 days, with connections developing among the neurons and glia. The longitudinal muscle strip with the attached myenteric plexus is stripped from the underlying circular muscle of the mouse ileum or colon and subjected to enzymatic digestion. In sterile conditions, the isolated neuronal and glia population are preserved within the pellet following centrifugation and plated on coverslips. Within 24-48 hr, neurite outgrowth occurs and neurons can be identified by pan-neuronal markers. After two days in culture, isolated neurons fire action potentials as observed by patch clamp studies. Furthermore, enteric glia can also be identified by GFAP staining. A network of neurons and glia in close apposition forms within 5 - 7 days. Enteric neurons can be individually and directly studied using methods such as immunohistochemistry, electrophysiology, calcium imaging, and single-cell PCR. Furthermore, this procedure can be performed in genetically modified animals. This methodology is simple to perform and inexpensive. Overall, this protocol exposes the components of the enteric nervous system in an easily manipulated manner so that we may better discover the functionality of the ENS in normal and disease states.  相似文献   

9.
This study examined whether myenteric neurons activate submucosal vasodilator pathways in in vitro combined submucosal-myenteric plexus preparations from guinea pig ileum. Exposed myenteric ganglia were electrically stimulated, and changes in the outside diameter of submucosal arterioles were monitored in adjoining tissue by videomicroscopy. Stimulation up to 18 mm from the recording site evoked large TTX-sensitive vasodilations in both orad and aborad directions. In double-chamber baths, which isolated the stimulating myenteric chamber from the recording submucosal chamber, hexamethonium or the muscarinic antagonist 4-diphenylacetoxy-N-(2-chloroethyl)-piperdine hydrochloride (4-DAMP) almost completely blocked dilations when superfused in the submucosal chamber. When hexamethonium was placed in the myenteric chamber approximately 50% of responses were hexamethonium sensitive in both orad and aboard orientations. The addition of 4-DAMP or substitution of Ca(2+)-free, 12 mM Mg(2+) solution did not cause further inhibition. These results demonstrate that polysynaptic pathways in the myenteric plexus projecting orad and aborad can activate submucosal vasodilator neurons. These pathways could coordinate intestinal blood flow and motility.  相似文献   

10.
This study examined synaptic inputs from myenteric neurons innervating submucosal neurons. Intracellular recordings were obtained from submucosal S neurons in guinea pig ileal preparations in vitro, and synaptic inputs were recorded in response to electrical stimulation of exposed myenteric plexus. Most S neurons received synaptic inputs [>80% fast (f) excitatory postsynaptic potentials (EPSP), >30% slow (s) EPSPs] from the myenteric plexus. Synaptic potentials were recorded significant distances aboral (fEPSPs, 25 mm; sEPSPs, 10 mm) but not oral to the stimulating site. When preparations were studied in a double-chamber bath that chemically isolated the stimulating "myenteric chamber" from the recording side "submucosal chamber," all fEPSPs were blocked by hexamethonium in the submucosal chamber, but not by a combination of nicotinic, purinergic, and 5-hydroxytryptamine-3 receptor antagonists in the myenteric chamber. In 15% of cells, a stimulus train elicited prolonged bursts of fEPSPs (>30 s duration) that were blocked by hexamethonium. These findings suggest that most submucosal S neurons receive synaptic inputs from predominantly anally projecting myenteric neurons. These inputs are poised to coordinate intestinal motility and secretion.  相似文献   

11.
The enteric nervous system consists of a number of interconnected networks of neuronal cell bodies and fibers as well as satellite cells, the enteric glia. Basic fibroblast growth factor (bFGF) is a mitogen for a variety of mesodermal and neuroectodermal-derived cells and its presence has been described in many tissues. The present work employs immunohistochemistry to analyze neurons and glial cells in the esophageal and colic enteric plexus of the Wistar rat for neurofilament (NF) and glial fibrillary acidic proteins (GFAP) immunoreactivity as well as bFGF immunoreactivity in these cells. Rats were processed for immunohistochemistry; the distal esophagus and colon were opened and their myenteric plexuses were processed as whole-mount preparations. The membranes were immunostained for visualization of NF, GFAP, and bFGF. NF immunoreactivity was seen in neuronal cell bodies of esophageal and colic enteric ganglia. GFAP-immunoreactive enteric glial cells and processes were present in the esophageal and colic enteric plexuses surrounding neuronal cell bodies and axons. A dense net of GFAP-immunoreactive processes was seen in the ganglia and connecting strands of the myenteric plexus. bFGF immunoreactivity was observed in the cytoplasm of the majority of the neurons in the enteric ganglia of esophagus and colon. The two-color immunoperoxidase and immunofluorescence methods revealed bFGF immunoreactivity also in the nucleus of GFAP-positive enteric glial cells. The results suggest that immunohistochemical localization of NF and GFAP may be an important tool in the study of the plasticity in the enteric nervous system. The presence of bFGF in neurons and glia of the myenteric plexus of the esophagus and the colon indicates that this neurotrophic factor may exert autocrine and paracrine actions in the enteric nervous system.  相似文献   

12.
Ulcerative colitis (UC) is an inflammatory bowel disease with alterations of colonic motility, which influence clinical symptoms. Although morpho-functional abnormalities in the enteric nervous system have been suggested, in UC patients scarce attention has been paid to possible changes in the cells that control colonic motility, including myenteric neurons, glial cells and interstitial cells of Cajal (ICC). This study evaluated the neural-glial components of myenteric ganglia and ICC in the colonic neuromuscular compartment of UC patients by quantitative immunohistochemical analysis. Full-thickness archival samples of the left colon were collected from 10 patients with UC (5 males, 5 females; age range 45-62 years) who underwent elective bowel resection. The colonic neuromuscular compartment was evaluated immunohistochemically in paraffin cross-sections. The distribution and number of neurons, glial cells and ICC were assessed by anti-HuC/D, -S100β and -c-Kit antibodies, respectively. Data were compared with findings on archival samples of normal left colon from 10 sex- and age-matched control patients, who underwent surgery for uncomplicated colon cancer. Compared to controls, patients with UC showed: (i) reduced density of myenteric HuC/D(+) neurons and S100β(+) glial cells, with a loss over 61% and 38%, respectively, and increased glial cell/neuron ratio; (ii) ICC decrease in the whole neuromuscular compartment. The quantitative variations of myenteric neuro-glial cells and ICC indicate considerable alterations of the colonic neuromuscular compartment in the setting of mucosal inflammation associated with UC, and provide a morphological basis for better understanding the motor abnormalities often observed in UC patients.  相似文献   

13.
Enhanced intestinal transit due to lipopolysaccharide (LPS) is reversed by cannabinoid (CB)2 receptor agonists in vivo, but the site and mechanism of action are unknown. We have tested the hypothesis that CB2 receptors are expressed in the enteric nervous system and are activated in pathophysiological conditions. Tissues from either saline- or LPS-treated (2 h; 65 microg/kg ip) rats were processed for RT-PCR, Western blotting, and immunohistochemistry or were mounted in organ baths where electrical field stimulation was applied in the presence or absence of CB receptor agonists. Whereas the CB2 receptor agonist JWH133 did not affect the electrically evoked twitch response of the ileum under basal conditions, in the LPS-treated tissues JWH133 was able to reduce the enhanced contractile response in a concentration-dependent manner. Rat ileum expressed CB2 receptor mRNA and protein under physiological conditions, and this expression was not affected by LPS treatment. In the myenteric plexus, CB2 receptors were expressed on the majority of neurons, although not on those expressing nitric oxide synthase. LPS did not alter the distribution of CB2 receptor expression in the myenteric plexus. In vivo LPS treatment significantly increased Fos expression in both enteric glia and neurons. This enhanced expression was significantly attenuated by JWH133, whose action was reversed by the CB2 receptor antagonist AM630. Taking these facts together, we conclude that activation of CB2 receptors in the enteric nervous system of the gastrointestinal tract dampens endotoxin-induced enhanced intestinal contractility.  相似文献   

14.
Most of the physiological information on the enteric nervous system has been obtained from studies on preparations of the myenteric ganglia attached to the longitudinal muscle layer. This preparation has a number of disadvantages, e.g., the inability to make patch-clamp recordings and the occurrence of muscle movements. To overcome these limitations we used isolated myenteric ganglia from the guinea pig small intestine. In this preparation movement was eliminated because muscle was completely absent, gigaseals were obtained, and whole cell recordings were made from neurons and glial cells. The morphological identity of cells was verified by injecting a fluorescent dye by micropipette. Neurons displayed voltage-gated inactivating inward Na(+) and Ca(2+) currents as well as delayed-rectifier K(+) currents. Immunohistochemical staining confirmed that most neurons have Na(+) channels. Neurons responded to GABA, indicating that membrane receptors were retained. Glial cells displayed hyperpolarization-induced K(+) inward currents and depolarization-induced K(+) outward currents. Glia showed large "passive" currents that were suppressed by octanol, consistent with coupling by gap junctions among these cells. These results demonstrate the advantages of isolated ganglia for studying myenteric neurons and glial cells.  相似文献   

15.
The study of enteric neurons is key to understanding intestinal motility anGutn of therapeutic strategies for dealing with neurogenic disorders. However, enteric neurons have historically been inaccessible to patch-clamp recording. We report here the first technique that allows patch-clamp recording of neurons from the intact myenteric plexus of the mouse duodenum. The mucosa, submucosa and circular muscles are removed, exposing the myenteric plexus on the longitudinal muscle. Proteolytic treatment of exposed ganglia combined with gentle cell-surface cleaning allows gigaseal formation. Compared with previous studies using intracellular microelectrode recordings or cultured myenteric neurons, this technique provides an opportunity to explore properties of single or multiple ion channels in myenteric neurons in their native environment. The protocol-from the tissue preparation to patch-clamp recording-can be completed in ~4 h.  相似文献   

16.
A number of in vitro studies suggest that many important developmental and functional events in the enteric nervous system are regulated by the intracellular signaling enzyme cAMP protein kinase A (PKA). To evaluate the in vivo significance of these observations, a Cre‐inducible, dominant‐negative, mutant regulatory subunit (RIαB) of PKA was activated in enteric neurons by either a Proteolipid protein‐Cre transgene or a Hox11L1‐Cre “knock‐in” allele. In both models, RIαB activation resulted consistently in profound distension of the proximal small intestine within 2 weeks after birth. Intestinal transit of radio‐opaque tracers was severely retarded in the double‐transgenic animals, which died shortly after weaning. In the enteric nervous system, recombination was restricted to neurons as demonstrated by histochemical analysis and confocal microscopic colocalization of a Cre recombinase‐dependent reporter gene with the neuronal marker Hu(C/D), in contrast with the glial marker S100. Histochemical analysis of β‐galactosidase expression and acetylcholinesterase activity, as well as neuronal counts, demonstrated that intestinal dysmotility was not associated with obvious malformation of the myenteric plexus. However, inhibition of PKA activity in enteric neurons disrupted the major motor complexes of isolated intestinal segments in vitro. These results provide strong evidence that PKA activity plays a critical role in enteric neurotransmission in vivo, and highlight neuronal PKA or related signaling molecules as potential therapeutic targets in gastrointestinal motility disorders. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

17.
N Gao  J Luo  K Uray  A Qian  S Yin  G Wang  X Wang  Y Xia  JD Wood  H Hu 《PloS one》2012,7(8):e44426

Background

Ca2+/calmodulin-dependent protein kinases (CaMKs) are major downstream mediators of neuronal calcium signaling that regulate multiple neuronal functions. CaMKII, one of the key CaMKs, plays a significant role in mediating cellular responses to external signaling molecules. Although calcium signaling plays an essential role in the enteric nervous system (ENS), the role of CaMKII in neurogenic intestinal function has not been determined. In this study, we investigated the function and expression pattern of CaMKII in the ENS across several mammalian species.

Methodology/Principal Findings

CaMKII expression was characterized by immunofluorescence analyses and Western Blot. CaMKII function was examined by intracellular recordings and by assays of colonic contractile activity. Immunoreactivity for CaMKII was detected in the ENS of guinea pig, mouse, rat and human preparations. In guinea pig ENS, CaMKII immunoreactivity was enriched in both nitric oxide synthase (NOS)- and calretinin-containing myenteric plexus neurons and non-cholinergic secretomotor/vasodilator neurons in the submucosal plexus. CaMKII immunoreactivity was also expressed in both cholinergic and non-cholinergic neurons in the ENS of mouse, rat and human. The selective CaMKII inhibitor, KN-62, suppressed stimulus-evoked purinergic slow EPSPs and ATP-induced slow EPSP-like response in guinea pig submucosal plexus, suggesting that CaMKII activity is required for some metabotropic synaptic transmissions in the ENS. More importantly, KN-62 significantly suppressed tetrodotoxin-induced contractile response in mouse colon, which suggests that CaMKII activity is a major determinant of the tonic neurogenic inhibition of this tissue.

Conclusion

ENS neurons across multiple mammalian species express CaMKII. CaMKII signaling constitutes an important molecular mechanism for controlling intestinal motility and secretion by regulating the excitability of musculomotor and secretomotor neurons. These findings revealed a fundamental role of CaMKII in the ENS and provide clues for the treatment of intestinal dysfunctions.  相似文献   

18.
The enteric nervous system (ENS) contains glutamatergic neurons, transporters, and functional ionotropic and groups I and II metabotropic glutamate receptors (mGluRs). The aim of this study was to determine whether the ENS contains functional group III mGluRs. RT-PCR demonstrated the expression of mGluR7 and mGluR8 mRNA in rat myenteric ganglia. Western blot analysis confirmed the presence of mGluR8 protein. Immunocytochemistry, in conjunction with confocal microscopy, demonstrated mGluR8 immunoreactivity in the ENS of several species, including humans. mGluR8 immunoreactivity was localized to the membrane of nerve cell bodies that received glutamatergic input. Significant receptor internalization of mGluR8 was observed on activation, and localization to membrane was observed on blocking with the mGluR III antagonist (RS)-cyclopropyl-4-phosphonophenylglycine (CPPG). mGluR8-positive myenteric neurons contained glutamate or nitric oxide synthase (NOS), a marker of inhibitory motorneurons. Enteric group III mGluRs are functional because mGluR8 agonists inhibited forskolin-induced accumulation of cAMP in isolated myenteric ganglia, and CPPG reduced this effect. In addition, an accelerating effect on guinea pig colonic motility was observed after the application of mGluR8 agonists. Increase in motility was specific, because CPPG inhibited it. Moreover, in the presence of hexamethonium or Nomega-nitro-l-arginine methyl ester, an inhibitor of NOS, responses caused by mGluR8 agonists were abolished. mGluR8 agonists also increased longitudinal muscle contractions. These findings suggest that mGluR8 agonists increase motility by inhibiting nitrergic relaxation and possibly by facilitating cholinergic contractions.  相似文献   

19.
Postnatal changes in the enteric nervous system (ENS) are involved in the establishment of colonic motility. In adult rats, butyrate induced neuroplastic changes in the ENS, leading to enhanced colonic motility. Whether butyrate can induce similar changes during the postnatal period remains unknown. Enemas (Na-butyrate) were performed daily in rat pups between postnatal day (PND) 7 and PND 17. Effects of butyrate were evaluated on morphological and histological parameters in the distal colon at PND 21. The neurochemical phenotype of colonic submucosal and myenteric neurons was analyzed using antibodies against Hu, choline acetyltransferase (ChAT), and neuronal nitric oxide synthase (nNOS). Colonic motility and neuromuscular transmission was assessed in vivo and ex vivo. Butyrate (2.5 mM) enemas had no impact on pup growth and histological parameters compared with control. Butyrate did not modify the number of Hu-immunoreactive (IR) neurons per ganglia. A significant increase in the proportion (per Hu-IR neurons) of nNOS-IR myenteric and submucosal neurons and ChAT-IR myenteric neurons was observed in the distal colon after butyrate enemas compared with control. In addition, butyrate induced a significant increase in both nitrergic and cholinergic components of the neuromuscular transmission compared with control. Finally, butyrate increased distal colonic transit time compared with control. We concluded that butyrate enemas induced neuroplastic changes in myenteric and submucosal neurons, leading to changes in gastrointestinal functions. Our results support exploration of butyrate as potential therapy for motility disorders in preterm infants with delayed maturation of the ENS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号