首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural bioinformatics of membrane proteins is still in its infancy, and the picture of their fold space is only beginning to emerge. Because only a handful of three-dimensional structures are available, sequence comparison and structure prediction remain the main tools for investigating sequence-structure relationships in membrane protein families. Here we present a comprehensive analysis of the structural families corresponding to α-helical membrane proteins with at least three transmembrane helices. The new version of our CAMPS database (CAMPS 2.0) covers nearly 1300 eukaryotic, prokaryotic, and viral genomes. Using an advanced classification procedure, which is based on high-order hidden Markov models and considers both sequence similarity as well as the number of transmembrane helices and loop lengths, we identified 1353 structurally homogeneous clusters roughly corresponding to membrane protein folds. Only 53 clusters are associated with experimentally determined three-dimensional structures, and for these clusters CAMPS is in reasonable agreement with structure-based classification approaches such as SCOP and CATH. We therefore estimate that ~1300 structures would need to be determined to provide a sufficient structural coverage of polytopic membrane proteins. CAMPS 2.0 is available at http://webclu.bio.wzw.tum.de/CAMPS2.0/.  相似文献   

2.
3.
Liu J  Rost B 《Proteins》2004,55(3):678-688
We developed a method CHOP dissecting proteins into domain-like fragments. The basic idea was to cut proteins beginning from very reliable experimental information (PDB), proceeding to expert annotations of domain-like regions (Pfam-A), and completing through cuts based on termini of known proteins. In this way, CHOP dissected more than two thirds of all proteins from 62 proteomes. Analysis of our structural domain-like fragments revealed four surprising results. First, >70% of all dissected proteins contained more than one fragment. Second, most domains spanned on average over approximately 100 residues. This average was similar for eukaryotic and prokaryotic proteins, and it is also valid-although previously not described-for all proteins in the PDB. Third, single-domain proteins were significant longer than most domains in multidomain proteins. Fourth, three fourths of all domains appeared shorter than 210 residues. We believe that our CHOP fragments constituted an important resource for functional and structural genomics. Nevertheless, our main motivation to develop CHOP was that the single-linkage clustering method failed to adequately group full-length proteins. In contrast, CLUP-the simple clustering scheme CLUP introduced here-succeeded largely to group the CHOP fragments from 62 proteomes such that all members of one cluster shared a basic structural core. CLUP found >63,000 multi- and >118,000 single-member clusters. Although most fragments were restricted to a particular cluster, approximately 24% of the fragments were duplicated in at least two clusters. Our thresholds for grouping two fragments into the same cluster were rather conservative. Nevertheless, our results suggested that structural genomics initiatives have to target >30,000 fragments to at least cover the multimember clusters in 62 proteomes.  相似文献   

4.
We address the problem of clustering the whole protein content of genomes into three different categories-globular, all-alpha, and all-beta membrane proteins-with the aim of fishing new membrane proteins in the pool of nonannotated proteins (twilight zone). The focus is then mainly on outer membrane proteins. This is performed by using an integrated suite of programs (Hunter) specifically developed for predicting the occurrence of signal peptides in proteins of Gram-negative bacteria and the topography of all-alpha and all-beta membrane proteins. Hunter is tested on the well and partially annotated proteins (2160 and 760, respectively) of Escherichia coli K 12 scoring as high as 95.6% in the correct assignment of each chain to the category. Of the remaining 1253 nonannotated sequences, 1099 are predicted globular, 136 are all-alpha, and 18 are all-beta membrane proteins. In Escherichia coli 0157:H7 we filtered 1901 nonannotated proteins. Our analysis classifies 1564 globular chains, 327 inner membrane proteins, and 10 outer membrane proteins. With Hunter, new membrane proteins are added to the list of putative membrane proteins of Gram-negative bacteria. The content of outer membrane proteins per genome (nine are analyzed) ranges from 1.5% to 2.4%, and it is one order of magnitude lower than that of inner membrane proteins. The finding is particularly relevant when it is considered that this is the first large-scale analysis based on validated tools that can predict the content of outer membrane proteins in a genome and can allow cross-comparison of the same protein type between different species.  相似文献   

5.
Carugo O 《Bioinformation》2010,4(8):347-351
Several non-redundant ensembles of protein three-dimensional structures were analyzed in order to estimate their natural clustering tendency by means of the Cox-Lewis coefficient. It was observed that, despite proteins tend to aggregate into different and well separated groups, some overlap between different clusters occurs. This suggests that classifications bases only on structural data cannot allow a systematic classification of proteins. Additional information are in particular needed in order to monitor completely the complex evolutionary relationships between proteins.  相似文献   

6.
Membrane proteins comprise up to one-third of prokaryotic and eukaryotic genomes, but only a very small number of membrane protein structures are known. Membrane proteins are challenging targets for structural biology, primarily due to the difficulty in producing and purifying milligram quantities of these proteins. We are evaluating different methods to produce and purify large numbers of prokaryotic membrane proteins for subsequent structural and functional analysis. Here, we present the comparative expression data for 37 target proteins, all of them secondary transporters, from the mesophilic organism Salmonella typhimurium and the two hyperthermophilic organisms Aquifex aeolicus and Pyrococcus furiosus in three different Escherichia coli expression vectors. In addition, we study the use of Lactococcus lactis as a host for integral membrane protein expression. Overall, 78% of the targets were successfully produced under at least one set of conditions. Analysis of these results allows us to assess the role of different variables in increasing "expression space" coverage for our set of targets. This analysis implies that to maximize the number of nonhomologous targets that are expressed, orthologous targets should be chosen and tested in two vectors with different types of promoters, using C-terminal tags. In addition, E. coli is shown to be a robust host for the expression of prokaryotic transporters, and is superior to L. lactis. These results therefore suggest appropriate strategies for high-throughput heterologous overproduction of membrane proteins.  相似文献   

7.
Bernsel A  Viklund H  Elofsson A 《Proteins》2008,71(3):1387-1399
Compared with globular proteins, transmembrane proteins are surrounded by a more intricate environment and, consequently, amino acid composition varies between the different compartments. Existing algorithms for homology detection are generally developed with globular proteins in mind and may not be optimal to detect distant homology between transmembrane proteins. Here, we introduce a new profile-profile based alignment method for remote homology detection of transmembrane proteins in a hidden Markov model framework that takes advantage of the sequence constraints placed by the hydrophobic interior of the membrane. We expect that, for distant membrane protein homologs, even if the sequences have diverged too far to be recognized, the hydrophobicity pattern and the transmembrane topology are better conserved. By using this information in parallel with sequence information, we show that both sensitivity and specificity can be substantially improved for remote homology detection in two independent test sets. In addition, we show that alignment quality can be improved for the most distant homologs in a public dataset of membrane protein structures. Applying the method to the Pfam domain database, we are able to suggest new putative evolutionary relationships for a few relatively uncharacterized protein domain families, of which several are confirmed by other methods. The method is called Searcher for Homology Relationships of Integral Membrane Proteins (SHRIMP) and is available for download at http://www.sbc.su.se/shrimp/.  相似文献   

8.
We proposed a fast and unsupervised clustering method, minimum span clustering (MSC), for analyzing the sequence–structure–function relationship of biological networks, and demonstrated its validity in clustering the sequence/structure similarity networks (SSN) of 682 membrane protein (MP) chains. The MSC clustering of MPs based on their sequence information was found to be consistent with their tertiary structures and functions. For the largest seven clusters predicted by MSC, the consistency in chain function within the same cluster is found to be 100%. From analyzing the edge distribution of SSN for MPs, we found a characteristic threshold distance for the boundary between clusters, over which SSN of MPs could be properly clustered by an unsupervised sparsification of the network distance matrix. The clustering results of MPs from both MSC and the unsupervised sparsification methods are consistent with each other, and have high intracluster similarity and low intercluster similarity in sequence, structure, and function. Our study showed a strong sequence–structure–function relationship of MPs. We discussed evidence of convergent evolution of MPs and suggested applications in finding structural similarities and predicting biological functions of MP chains based on their sequence information. Proteins 2015; 83:1450–1461. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
A refinement protocol based on physics‐based techniques established for water soluble proteins is tested for membrane protein structures. Initial structures were generated by homology modeling and sampled via molecular dynamics simulations in explicit lipid bilayer and aqueous solvent systems. Snapshots from the simulations were selected based on scoring with either knowledge‐based or implicit membrane‐based scoring functions and averaged to obtain refined models. The protocol resulted in consistent and significant refinement of the membrane protein structures similar to the performance of refinement methods for soluble proteins. Refinement success was similar between sampling in the presence of lipid bilayers and aqueous solvent but the presence of lipid bilayers may benefit the improvement of lipid‐facing residues. Scoring with knowledge‐based functions (DFIRE and RWplus) was found to be as good as scoring using implicit membrane‐based scoring functions suggesting that differences in internal packing is more important than orientations relative to the membrane during the refinement of membrane protein homology models.  相似文献   

10.
The overexpression of milligram quantities of protein remains a key bottleneck in membrane protein structural biology. A challenge of particular difficulty has been the overproduction of eukaryotic membrane proteins. In order to cope with the frequently poor expression levels associated with these challenging proteins, it is often necessary to screen a large number of homologues to find a well expressing clone. To facilitate this process using the heterologous, eukaryotic expression host Pichia pastoris, we have developed a simple fluorescent induction plate‐screening assay that allows for the rapid detection of well expressing clones of eukaryotic membrane proteins that have been fused to GFP. Using a eukaryotic membrane protein known to express well in P. pastoris (human aquaporin 4) and homologues of the ER associated membrane protein phosphatidylethanolamine N‐methyltransferase (PEMT), we demonstrate that when a large number of clones are screened, a small number of highly expressing “jackpot” clones can be isolated. A jackpot PEMT clone resulted in 5 mg/L yield after purification. The method allows for the facile simultaneous screening of hundreds of clones providing an alternate to in‐culture screening and will greatly accelerate the search for overexpressing eukaryotic membrane proteins.  相似文献   

11.
The detection of Outer Membrane Proteins (OMP) in whole genomes is an actual question, their sequence characteristics have thus been intensively studied. This class of protein displays a common beta-barrel architecture, formed by adjacent antiparallel strands. However, due to the lack of available structures, few structural studies have been made on this class of proteins. Here we propose a novel OMP local structure investigation, based on a structural alphabet approach, i.e., the decomposition of 3D structures using a library of four-residue protein fragments. The optimal decomposition of structures using hidden Markov model results in a specific structural alphabet of 20 fragments, six of them dedicated to the decomposition of beta-strands. This optimal alphabet, called SA20-OMP, is analyzed in details, in terms of local structures and transitions between fragments. It highlights a particular and strong organization of beta-strands as series of regular canonical structural fragments. The comparison with alphabets learned on globular structures indicates that the internal organization of OMP structures is more constrained than in globular structures. The analysis of OMP structures using SA20-OMP reveals some recurrent structural patterns. The preferred location of fragments in the distinct regions of the membrane is investigated. The study of pairwise specificity of fragments reveals that some contacts between structural fragments in beta-sheets are clearly favored whereas others are avoided. This contact specificity is stronger in OMP than in globular structures. Moreover, SA20-OMP also captured sequential information. This can be integrated in a scoring function for structural model ranking with very promising results.  相似文献   

12.
The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1–2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug‐specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans‐membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α‐helical MPs as well as β‐barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge‐based scoring functions. Moreover, de novo methods have benefited from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade. Proteins 2015; 83:1–24. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Structure prediction of membrane proteins   总被引:1,自引:0,他引:1  
There is a large gap between the number of membrane protein (MP) sequences and that of their decoded 3D structures, especially high-resolution structures, due to difficulties in crystal preparation of MPs. However, detailed knowledge of the 3D structure is required for the fundamental understanding of the function of an MP and the interactions between the protein and its inhibitors or activators. In this paper, some computational approaches that have been used to predict MP structures are discussed and compared.  相似文献   

14.
We introduce an energy function for contact maps of proteins. In addition to the standard term, that takes into account pair-wise interactions between amino acids, our potential contains a new hydrophobic energy term. Parameters of the energy function were obtained from a statistical analysis of the contact maps of known structures. The quality of our energy function was tested extensively in a variety of ways. In particular, fold recognition experiments revealed that for a fixed sequence the native map is identified correctly in an overwhelming majority of the cases tested. We succeeded in identifying the structure of some proteins that are known to pose difficulties for such tests (BPTI, spectrin, and cro-protein). In addition, many known pairs of homologous structures were correctly identified, even when the two sequences had relatively low sequence homology. We also introduced a dynamic Monte Carlo procedure in the space of contact maps, taking topological and polymeric constraints into account by restrictive dynamic rules. Various aspects of protein dynamics, including high-temperature melting and refolding, were simulated. Perspectives of application of the energy function and the method for structure checking and fold prediction are discussed. Proteins 26:391–410 © 1996 Wiley-Liss, Inc.  相似文献   

15.
Identification of protein biochemical functions based on their three-dimensional structures is now required in the post-genome-sequencing era. Ligand binding is one of the major biochemical functions of proteins, and thus the identification of ligands and their binding sites is the starting point for the function identification. Previously we reported our first trial on structure-based function prediction, based on the similarity searches of molecular surfaces against the functional site database. Here we describe the extension of our first trial by expanding the search database to whole heteroatom binding sites appearing within the Protein Data Bank (PDB) with the new analysis protocol. In addition, we have determined the similarity threshold line, by using 10 structure pairs with solved free and complex structures. Finally, we extensively applied our method to newly determined hypothetical proteins, including some without annotations, and evaluated the performance of our methods.  相似文献   

16.
Prediction of transmembrane (TM) segments of amino acid sequences of membrane proteins is a well-known and very important problem. The accuracy of its solution can be improved for approaches that do not use a homology search in an additional data bank. There is a lack of tested data in this area of research, because information on the structure of membrane proteins is scarce. In this work we created a test sample of structural alignments for membrane proteins. The TM segments of these proteins were mapped according to aligned 3D structures resolved for these proteins. A method for predicting TM segments in an alignment was developed on the basis of the forward-backward algorithm from the HMM theory. This method allows a user not only to predict TM segments, but also to create a probabilistic membrane profile, which can be employed in multiple alignment procedures taking the secondary structure of proteins into account. The method was implemented in a computer program available at http://bioinf.fbb.msu.ru/fwdbck/. It provides better results than the MEMSAT method, which is nearly the only tool predicting TM segments in multiple alignments, without a homology search.  相似文献   

17.
The function of a protein molecule is greatly influenced by its three-dimensional (3D) structure and therefore structure prediction will help identify its biological function. We have updated Sequence, Motif and Structure (SMS), the database of structurally rigid peptide fragments, by combining amino acid sequences and the corre-sponding 3D atomic coordinates of non-redundant (25%) and redundant (90%) protein chains available in the Protein Data Bank (PDB). SMS 2.0 provides information pertaining to the peptide fragments of length 5-14 resi-dues. The entire dataset is divided into three categories, namely, same sequence motifs having similar, intermedi-ate or dissimilar 3D structures. Further, options are provided to facilitate structural superposition using the pro-gram structural alignment of multiple proteins (STAMP) and the popular JAVA plug-in (Jmol) is deployed for visualization. In addition, functionalities are provided to search for the occurrences of the sequence motifs in other structural and sequence databases like PDB, Genome Database (GDB), Protein Information Resource (PIR) and Swiss-Prot. The updated database along with the search engine is available over the World Wide Web through the following URL http://cluster.physics.iisc.ernet.in/sms/.  相似文献   

18.
Cai XH  Jaroszewski L  Wooley J  Godzik A 《Proteins》2011,79(8):2389-2402
The protein universe can be organized in families that group proteins sharing common ancestry. Such families display variable levels of structural and functional divergence, from homogenous families, where all members have the same function and very similar structure, to very divergent families, where large variations in function and structure are observed. For practical purposes of structure and function prediction, it would be beneficial to identify sub-groups of proteins with highly similar structures (iso-structural) and/or functions (iso-functional) within divergent protein families. We compared three algorithms in their ability to cluster large protein families and discuss whether any of these methods could reliably identify such iso-structural or iso-functional groups. We show that clustering using profile-sequence and profile-profile comparison methods closely reproduces clusters based on similarities between 3D structures or clusters of proteins with similar biological functions. In contrast, the still commonly used sequence-based methods with fixed thresholds result in vast overestimates of structural and functional diversity in protein families. As a result, these methods also overestimate the number of protein structures that have to be determined to fully characterize structural space of such families. The fact that one can build reliable models based on apparently distantly related templates is crucial for extracting maximal amount of information from new sequencing projects.  相似文献   

19.
Structures for protein domains have increased rapidly in recent years owing to advances in structural biology and structural genomics projects. New structures are often similar to those solved previously, and such similarities can give insights into function by linking poorly understood families to those that are better characterized. They also allow the possibility of combing information to find still more proteins adopting a similar structure and sometimes a similar function, and to reprioritize families in structural genomics pipelines. We explore this possibility here by preparing merged profiles for pairs of structurally similar, but not necessarily sequence-similar, domains within the SMART and Pfam database by way of the Structural Classification of Proteins (SCOP). We show that such profiles are often able to successfully identify further members of the same superfamily and thus can be used to increase the sensitivity of database searching methods like HMMer and PSI-BLAST. We perform detailed benchmarks using the SMART and Pfam databases with four complete genomes frequently used as annotation benchmarks. We quantify the associated increase in structural information in Swissprot and discuss examples illustrating the applicability of this approach to understand functional and evolutionary relationships between protein families.  相似文献   

20.
A major goal of structural genomics is the provision of a structural template for a large fraction of protein domains. The magnitude of this task depends on the number and nature of protein sequence families. With a large number of bacterial genomes now fully sequenced, it is possible to obtain improved estimates of the number and diversity of families in that kingdom. We have used an automated clustering procedure to group all sequences in a set of genomes into protein families. Bench-marking shows the clustering method is sensitive at detecting remote family members, and has a low level of false positives. This comprehensive protein family set has been used to address the following questions. (1) What is the structure coverage for currently known families? (2) How will the number of known apparent families grow as more genomes are sequenced? (3) What is a practical strategy for maximizing structure coverage in future? Our study indicates that approximately 20% of known families with three or more members currently have a representative structure. The study indicates also that the number of apparent protein families will be considerably larger than previously thought: We estimate that, by the criteria of this work, there will be about 250,000 protein families when 1000 microbial genomes have been sequenced. However, the vast majority of these families will be small, and it will be possible to obtain structural templates for 70-80% of protein domains with an achievable number of representative structures, by systematically sampling the larger families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号