首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The C terminus of the beta(2)-adrenoceptor (AR) interacts with G protein-coupled receptor kinases and arrestins in an agonist-dependent manner, suggesting that conformational changes induced by ligands in the transmembrane domains are transmitted to the C terminus. We used fluorescence resonance energy transfer (FRET) to examine ligand-induced structural changes in the distance between two positions on the beta(2)-AR C terminus and cysteine 265 (Cys-265) at the cytoplasmic end of transmembrane domain 6. The donor fluorophore FlAsH (Fluorescein Arsenical Helix binder) was attached to a CCPGCC motif introduced at position 351-356 in the proximal C terminus or at the distal C terminus. An acceptor fluorophore, Alexa Fluor 568, was attached to Cys-265. FRET analyses revealed that the average distances between Cys-265 and the proximal and distal FlAsH sites were 57 and 62A(,) respectively. These relatively large distances suggest that the C terminus is in an extended, relatively unstructured conformation. Nevertheless, we observed ligand-specific changes in FRET. All ligands induced an increase in FRET between the proximal C-terminal FlAsH site and Cys-265. Ligands that have been shown to induce arrestin-dependent ERK activation, including the catecholamine agonists and the inverse agonist ICI118551, led to a decrease in FRET between the distal FlAsH site and Cys-265, whereas other ligands had no effect or induced a small increase in FRET. Taken together the results provide new insight into the structure of the C terminus of the beta(2)-AR as well as ligand-induced conformational changes that may be relevant to arrestin-dependent regulation and signaling.  相似文献   

3.
The synthesis of oligonucleotides containing 2′-deoxy-2′-fluoro-4′-thioarabinonucleotides is described. 2′-Deoxy-2′-fluoro-5-methyl-4′-thioarabinouridine (4′S-FMAU) was incorporated into 18-mer antisense oligonucleotides (AONs). 4′S-FMAU adopts a predominantly northern sugar conformation. Oligonucleotides containing 4′S-FMAU, unlike those containing FMAU, were unable to elicit E. coli or human RNase H activity, thus corroborating the hypothesis that RNase H prefers duplexes containing oligonucleotides that can adopt eastern conformations in the antisense strand. The duplex structure and stability of these oligonucleotides was also investigated via circular dichroism (CD)- and UV- binding studies. Replacement of the 4′-oxygen by a sulfur atom resulted in a marked decrease in melting temperature of AON:RNA as well as AON:DNA duplexes. 2′-Deoxy-2′-fluoro-4′-thioarabinouridine (4′S-FAU) was incorporated into 21-mer small interfering RNA (siRNA) and the resulting siRNA molecules were able to trigger RNA interference with good efficiency. Positional effects were explored, and synergy with 2′F-ANA, which has been previously established as a functional siRNA modification, was demonstrated.  相似文献   

4.
We describe a new computational technique to predict conformationally switching elements in proteins from their amino acid sequences. The method, called ASP (Ambivalent Structure Predictor), analyzes results from a secondary structure prediction algorithm to identify regions of conformational ambivalence. ASP identifies ambivalent regions in 16 test protein sequences for which function involves substantial backbone rearrangements. In the test set, all sites previously described as conformational switches are correctly predicted to be structurally ambivalent regions. No such regions are predicted in three negative control protein sequences. ASP may be useful as a guide for experimental studies on protein function and motion in the absence of detailed three-dimensional structural data.  相似文献   

5.
Cardiac-specific overexpression of the human beta(2)-adrenergic receptor (AR) in transgenic mice (TG4) enhances basal cardiac function due to ligand-independent spontaneous beta(2)-AR activation. However, agonist-mediated stimulation of either beta(1)-AR or beta(2)-AR fails to further enhance contractility in TG4 ventricular myocytes. Although the lack of beta(2)-AR response has been ascribed to an efficient coupling of the receptor to pertussis toxin-sensitive G(i) proteins in addition to G(s), the contractile response to beta(1)-AR stimulation by norepinephrine and an alpha(1)-adrenergic antagonist prazosin is not restored by pertussis toxin treatment despite a G(i) protein elevation of 1.7-fold in TG4 hearts. Since beta-adrenergic receptor kinase, betaARK1, activity remains unaltered, the unresponsiveness of beta(1)-AR is not caused by betaARK1-mediated receptor desensitization. In contrast, pre-incubation of cells with anti-adrenergic reagents such as muscarinic receptor agonist, carbachol (10(-5)m), or a beta(2)-AR inverse agonist, ICI 118,551 (5 x 10(-7)m), to abolish spontaneous beta(2)-AR signaling, both reduce the base-line cAMP and contractility and, surprisingly, restore the beta(1)-AR contractile response. The "rescued" contractile response is completely reversed by a beta(1)-AR antagonist, CGP 20712A. Furthermore, these results from the transgenic animals are corroborated by in vitro acute gene manipulation in cultured wild type adult mouse ventricular myocytes. Adenovirus-directed overexpression of the human beta(2)-AR results in elevated base-line cAMP and contraction associated with a marked attenuation of beta(1)-AR response; carbachol pretreatment fully revives the diminished beta(1)-AR contractile response. Thus, we conclude that constitutive beta(2)-AR activation induces a heterologous desensitization of beta(1)-ARs independent of betaARK1 and G(i) proteins; suppression of the constitutive beta(2)-AR signaling by either a beta(2)-AR inverse agonist or stimulation of the muscarinic receptor rescues the beta(1)-ARs from desensitization, permitting agonist-induced contractile response.  相似文献   

6.
7.
Activation-dependent conformational changes in {beta}-arrestin 2   总被引:2,自引:0,他引:2  
Beta-arrestins are multifunctional adaptor proteins, which mediate desensitization, endocytosis, and alternate signaling pathways of seven membrane-spanning receptors (7MSRs). Crystal structures of the basal inactive state of visual arrestin (arrestin 1) and beta-arrestin 1 (arrestin 2) have been resolved. However, little is known about the conformational changes that occur in beta-arrestins upon binding to the activated phosphorylated receptor. Here we characterize the conformational changes in beta-arrestin 2 (arrestin 3) by comparing the limited tryptic proteolysis patterns and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) profiles of beta-arrestin 2 in the presence of a phosphopeptide (V(2)R-pp) derived from the C terminus of the vasopressin type II receptor (V(2)R) or the corresponding nonphosphopeptide (V(2)R-np). V(2)R-pp binds to beta-arrestin 2 specifically, whereas V(2)R-np does not. Activation of beta-arrestin 2 upon V(2)R-pp binding involves the release of its C terminus, as indicated by exposure of a previously inaccessible cleavage site, one of the polar core residues Arg(394), and rearrangement of its N terminus, as indicated by the shielding of a previously accessible cleavage site, residue Arg(8). Interestingly, binding of the polyanion heparin also leads to release of the C terminus of beta-arrestin 2; however, heparin and V(2)R-pp have different binding site(s) and/or induce different conformational changes in beta-arrestin 2. Release of the C terminus from the rest of beta-arrestin 2 has functional consequences in that it increases the accessibility of a clathrin binding site (previously demonstrated to lie between residues 371 and 379) thereby enhancing clathrin binding to beta-arrestin 2 by 10-fold. Thus, the V(2)R-pp can activate beta-arrestin 2 in vitro, most likely mimicking the effects of an activated phosphorylated 7MSR. These results provide the first direct evidence of conformational changes associated with the transition of beta-arrestin 2 from its basal inactive conformation to its biologically active conformation and establish a system in which receptor-beta-arrestin interactions can be modeled in vitro.  相似文献   

8.
A prototypic study of the molecular mechanisms of activation or inactivation of peptide hormone G protein-coupled receptors was carried out on the human B2 bradykinin receptor. A detailed pharmacological analysis of receptor mutants possessing either increased constitutive activity or impaired activation or ligand recognition allowed us to propose key residues participating in intramolecular interaction networks stabilizing receptor inactive or active conformations: Asn(113) and Tyr(115) (TM III), Trp(256) and Phe(259) (TM VI), Tyr(295) (TM VII) which are homologous of the rhodopsin residues Gly(120), Glu(122), Trp(265), Tyr(268), and Lys(296), respectively. An essential experimental finding was the spatial proximity between Asn(113), which is the cornerstone of inactive conformations, and Trp(256) which plays a subtle role in controlling the balance between active and inactive conformations. Molecular modeling and mutagenesis data showed that Trp(256) and Tyr(295) constitute, together with Gln(288), receptor contact points with original nonpeptidic ligands. It provided an explanation for the ligand inverse agonist behavior on the WT receptor, with underlying restricted motions of TMs III, VI, and VII, and its agonist behavior on the Ala(113) and Phe(256) constitutively activated mutants. These data on the B2 receptor emphasize that conformational equilibria are controlled in a coordinated fashion by key residues which are located at strategic positions for several G protein-coupled receptors. They are discussed in comparison with the recently determined rhodopsin crystallographic structure.  相似文献   

9.
Drugs acting at G protein coupled receptors can be classified in biological assays as either agonists, partial agonists, neutral antagonists, or as inverse agonists. Very little is known about the actual molecular events and structural changes that occur in the receptor following ligand binding and during transmission of a signal across the membrane. Therefore, the structural basis for the biological classification of drug action remains unknown. To date, the conformational state of G protein coupled receptors has been inferred from the activity of the effector enzyme modulated by the G protein. We have used two different approaches to monitor conformational changes in beta 2 adrenergic receptor. Fluorescence spectroscopy can be used to directly monitor structural changes in purified beta 2 adrenergic receptor in real-time. The emission from many fluorescent molecules is strongly dependent on the polarity of the environment in which they are located. Thus, fluorescent probes covalently bound to proteins can be used as sensitive indicators of conformational changes and protein-protein interactions. In addition, we examined functional differences between agonists and partial agonists using fusion proteins between wild-type beta 2 receptor or a constitutively active beta 2 receptor mutant and Gs alpha. These receptor-G protein fusion proteins guarantee highly efficient coupling with a defined stoichiometry. The results of these experiments will be discussed in the context of current models of G protein coupled receptor activation.  相似文献   

10.
Switches (bistability) and oscillations (limit cycle) are omnipresent in biological networks. Synthetic genetic networks producing bistability and oscillations have been designed and constructed experimentally. However, in real biological systems, regulatory circuits are usually interconnected and the dynamics of those complex networks is often richer than the dynamics of simple modules. Here we couple the genetic Toggle switch and the Repressilator, two prototypic systems exhibiting bistability and oscillations, respectively. We study two types of coupling. In the first type, the bistable switch is under the control of the oscillator. Numerical simulation of this system allows us to determine the conditions under which a periodic switch between the two stable steady states of the Toggle switch occurs. In addition we show how birhythmicity characterized by the coexistence of two stable small-amplitude limit cycles, can easily be obtained in the system. In the second type of coupling, the oscillator is placed under the control of the Toggleswitch. Numerical simulation of this system shows that this construction could for example be exploited to generate a permanent transition from a stable steady state to self-sustained oscillations (and vice versa) after a transient external perturbation. Those results thus describe qualitative dynamical behaviors that can be generated through the coupling of two simple network modules. These results differ from the dynamical properties resulting from interlocked feedback loops systems in which a given variable is involved at the same time in both positive and negative feedbacks. Finally the models described here may be of interest in synthetic biology, as they give hints on how the coupling should be designed to get the required properties.  相似文献   

11.
Plasma membrane recycling of G protein-coupled receptors can occur by at least two distinct mechanisms as follows: a "default" mechanism that occurs nonselectively, and a specifically sorted mechanism that requires the endosome-associated protein Hrs. In this study we have defined a sequence in the beta2-adrenergic receptor cytoplasmic tail that confers Hrs dependence on receptor recycling. This sequence resembles acidic dileucine class motifs found in other membrane proteins but is structurally and functionally distinct from previously identified sorting sequences. Mutation of the novel sorting sequence rendered plasma membrane recycling independent of Hrs and independent of a distal PDZ ligand required for Hrs-dependent recycling. We propose that the novel sorting sequence functions to "switch" endocytic trafficking between mechanistically distinct recycling modes, thereby explaining failure of the wild type beta2-adrenergic receptor to recycle efficiently by default.  相似文献   

12.
The immunochemical reactivity of unfractionated antibodies elicited by denatured beta 2 subunits of Escherichia coli tryptophan synthase [L-serine hydro-lyase (adding indole) EC 4.2.1.20] with the homologous antigen and with the native enzyme is examined. These antibodies recognize the native apoenzyme nearly as well as the denatured protein. On the contrary, after binding of its cofactor, pyridoxal 5'-phosphate, the protein exhibits a much lower immunoreactivity toward these antibodies. This decrease of affinity becomes even more pronounced when the beta 2 protein interacts with the alpha subunit. Similarly, reduction of the Schiff base formed between the cofactor and the protein leads to a strong decrease of immunoreactivity. To account for these results, it is proposed that apo-beta 2 must be a dynamic flexible structure that easily exposes to the solvent regions of its polypeptide chain that normally are buried in its interior. The increase in rigidity of this structure upon binding of the cofactor, reduction of Schiff base, and formation of the alpha 2 beta 2 complex would then account for the decreased immunoreactivity of these various states of the native beta 2 protein.  相似文献   

13.
Plasmon-waveguide resonance (PWR) spectroscopy is an optical technique that can be used to probe the molecular interactions occurring within anisotropic proteolipid membranes in real time without requiring molecular labeling. This method directly monitors mass density, conformation, and molecular orientation changes occurring in such systems and allows determination of protein-ligand binding constants and binding kinetics. In the present study, PWR has been used to monitor the incorporation of the human beta(2)-adrenergic receptor into a solid-supported egg phosphatidylcholine lipid bilayer and to follow the binding of full agonists (isoproterenol, epinephrine), a partial agonist (dobutamine), an antagonist (alprenolol), and an inverse agonist (ICI-118,551) to the receptor. The combination of differences in binding kinetics and the PWR spectral changes point to the occurrence of multiple conformations that are characteristic of the type of ligand, reflecting differences in the receptor structural states produced by the binding process. These results provide new evidence for the conformational heterogeneity of the liganded states formed by the beta(2)-adrenergic receptor.  相似文献   

14.
Role of glycosylation for beta 2-adrenoceptor function in A431 cells   总被引:3,自引:0,他引:3  
A431 cells incubated with tunicamycin (0.15 micrograms/ml) for 40 h under conditions where incorporation of [3H] leucine into protein was inhibited less than 10% expressed mainly a beta-receptor species of about Mr 40,000 which was ascribed to the nonglycosylated form of the beta-receptor of about Mr 75,000 found in normal A431 cells by photoaffinity labeling. However, the tunicamycin-treated cells expressed the same number of specific beta 2-receptor-binding sites as untreated cells. Moreover, the aglycoreceptors had the same ligand binding properties as beta-adrenoceptors from control cells; but, functional tests of the receptor from tunicamycin-treated cells in reconstituted lipid vesicles showed that receptors from tunicamycin-treated cells had lost coupling efficiency. The coupling defect was at the receptor level since control experiments indicated that the other components of the signal transmission chain from beta-adrenoceptor to adenylate cyclase, the stimulatory regulatory GTP-binding protein of adenylate cyclase and adenylate cyclase, were fully functional. Homologous desensitization in tunicamycin-treated cells was characterized by export from the cell surface and sequestration of about the same number of beta-adrenoceptors as in normal desensitized cells but without further reduction of hormonally stimulated adenylate cyclase below the low level already attained in nondesensitized tunicamycin-treated cells. This was explained by assuming that the receptors removed in the course of homologous desensitization from the surface of tunicamycin-treated cells were already nonfunctional. Thus, beta-adrenergic desensitization in tunicamycin-treated cells is characterized by the functional disengagement of receptor removal and loss of adenylate cyclase activity.  相似文献   

15.
FRET (fluorescence resonance energy transfer) and co-immunoprecipitation studies confirmed the capacity of beta-arrestin 2 to self-associate. Amino acids potentially involved in direct protein-protein interaction were identified via combinations of spot-immobilized peptide arrays and mapping of surface exposure. Among potential key amino acids, Lys(285), Arg(286) and Lys(295) are part of a continuous surface epitope located in the polar core between the N- and C-terminal domains. Introduction of K285A/R286A mutations into beta-arrestin 2-eCFP (where eCFP is enhanced cyan fluorescent protein) and beta-arrestin 2-eYFP (where eYFP is enhanced yellow fluorescent protein) constructs substantially reduced FRET, whereas introduction of a K295A mutation had a more limited effect. Neither of these mutants was able to promote beta2-adrenoceptor-mediated phosphorylation of the ERK1/2 (extracellular-signal-regulated kinase 1/2) MAPKs (mitogen-activated protein kinases). Both beta-arrestin 2 mutants displayed limited capacity to co-immunoprecipitate ERK1/2 and further spot-immobilized peptide arrays indicated each of Lys(285), Arg(286) and particularly Lys(295) to be important for this interaction. Direct interactions between beta-arrestin 2 and the beta2-adrenoceptor were also compromised by both K285A/R286A and K295A mutations of beta-arrestin 2. These were not non-specific effects linked to improper folding of beta-arrestin 2 as limited proteolysis was unable to distinguish the K285A/R286A or K295A mutants from wild-type beta-arrestin 2, and the interaction of beta-arrestin 2 with JNK3 (c-Jun N-terminal kinase 3) was unaffected by the K285A/R286A or L295A mutations. These results suggest that amino acids important for self-association of beta-arrestin 2 also play an important role in the interaction with both the beta2-adrenoceptor and the ERK1/2 MAPKs. Regulation of beta-arrestin 2 self-association may therefore control beta-arrestin 2-mediated beta2-adrenoceptor-ERK1/2 MAPK signalling.  相似文献   

16.
Chronic exposure of human isolated bronchi to beta2-adrenergic agonists, especially fenoterol, potentiates smooth muscle contraction in response to endothelin-1 (ET-1), a peptide implicated in chronic inflammatory airway diseases. 5'-Cyclic adenosine monophosphate (cAMP) pathways are involved in fenoterol-induced hyperresponsiveness. The present study investigated whether chronic elevation of intracellular cAMP by other pathways than beta2-adrenoceptor stimulation provokes bronchial hyperresponsiveness. Samples from eighteen human bronchi were sensitized to ET-1 by prolonged incubation with 0.1 microM fenoterol (15 h, 21 degrees C), or, under similar conditions, were incubated with a selective type-3 phosphodiesterase inhibitor (1 microM siguazodan), two selective type-4 phosphodiesterase inhibitors (0.1 microM rolipram and 0.1 microM cilomilast), a combination of fenoterol and rolipram (0.1 microM each) or of fenoterol and cilomilast (0.1 microM each). Rolipram and cilomilast, but not siguazodan, induced hyperresponsiveness (p < 0.01 and p < 0.05 vs. paired controls, respectively) similar to the fenoterol effect. Fenoterol-induced bronchial hyperresponsiveness was significantly enhanced by coincubation with cilomilast (p < 0.05 vs. fenoterol alone) but not with rolipram. Our results suggest that prolonged activation of intracellular cAMP through phosphodiesterase 4 inhibition induces hyperresponsiveness to ET-1 in human isolated bronchi. However, differences in subcellular localization of phosphodiesterase 4 may provoke divergent responsiveness patterns when human bronchi are continuously exposed to selective phosphodiesterase inhibitors with or without beta2-adrenergic agonists.  相似文献   

17.
Bronchial rings from nonatopic humans were passively sensitized with serum from allergic subjects. Allergen challenge significantly reduced the relaxant effect of salbutamol on carbachol-induced contractions, suggesting beta(2)-adrenoceptor (beta(2)-AR) pathway dysfunction. Incubation of challenged rings for 3 h with 3 x 10(-6) M beclomethasone dipropionate (BDP) restored the relaxant effect, suggesting reversal of beta(2)-AR pathway dysfunction. Incubation with the G(s)alpha protein-stimulating cholera toxin attenuated contractile responses to carbachol significantly less in challenged than in unchallenged rings. Treatment of challenged rings with BDP resulted in an inhibitory effect of cholera toxin that was similar to the effect in unchallenged rings. G(s)alpha protein expression was not significantly altered by BDP, suggesting that the activity of G(s)alpha protein was increased. Relaxation of challenged rings by forskolin was not significantly affected by BDP, suggesting that beta(2)-AR pathway dysfunction was proximal to the adenylyl cyclase. In conclusion, short-term (3-h) treatment with BDP after allergen challenge ablated beta(2)-AR pathway dysfunction by increasing the activity of the G(s)alpha protein in human isolated bronchi.  相似文献   

18.
The homology models of the alpha4beta2 and alpha3beta4 nicotinic acetylcholine receptors (nAChRs) suggest that the two nAChR subtypes are different in their ligand-binding pockets due to the non-conserved residues in the beta-subunits. The docking of nicotine, epibatidine, A-84543, and the two analogs of A-84543 ligands 1 and 2 to the homology models of alpha4beta2 and alpha3beta4 is presented. It is found that the protonated amino groups of these ligands bind to the alpha-subunits, whereas the remaining parts of the ligands bind to the beta-subunits. The two non-conserved amino acids Lys77 and Phe117 in the beta2-subunit corresponding to Ile77 and Gln117 in the beta4-subunit are identified to be the key players determining the binding modes of the ligands. We demonstrate how the increase in the number of the atoms connecting the pyrrolidine and pyridine rings in A-84543, 1, and 2, and an introduction of the alkynyl substituent in the pyridine ring affect the binding and shift the selectivity of these ligands toward the beta2-containing receptors. Further improvement in affinity and selectivity in this and other series of the ligands may be achieved by designing molecules that would specifically target the non-conserved regions in nAChRs.  相似文献   

19.
The alpha(2) Heremans-Schmid glycoprotein (AHSG) gene is implicated in the regulation of body fat and insulin sensitivity. The Met/Met genotype of the common single-nucleotide polymorphism (SNP), rs4917, in the AHSG gene has been shown to be associated with reduced plasma levels as well as lower body fat. Here, we studied the association of this variation with subcutaneous adipocyte lipolysis. Ninety-three obese and nonobese healthy men were genotyped for Thr230Met, and subcutaneous adipose tissue biopsies were analyzed for lipolysis characteristics. The Met/Met genotype was associated with a marked increase of 1.5 log units in the lipolytic sensitivity to the beta2-adrenoceptor agonist terbutaline (P=0.0008) as compared with the Thr/Thr and Thr/Met genotypes. This corresponds to an approximately 35-fold increase in beta2-adrenoceptor function. The genotype effect was independent of body mass index and waist circumference. In contrast, lipolytic sensitivity to both the beta1-adrenoceptor agonist dobutamine (P=0.25) and the alpha2A-adrenoceptor agonist clonidine (P=0.54) was unaffected by the Thr230Met variation. Moreover, no difference in either maximal stimulation or inhibition of lipolysis was found between genotypes. We conclude that a common variation (Thr230Met) in the AHSG gene is associated with a marked increase in beta2-adrenoceptor sensitivity in subcutaneous fat cells, which may be of importance in body weight regulation.  相似文献   

20.
A range of studies have indicated that many rhodopsin-like, family A G protein-coupled receptors, including the beta(2)-adrenoceptor, exist and probably function as dimers. It is less clear if receptors internalize as dimers and if agonist occupancy of only one element of a dimer is sufficient to cause internalization of a receptor dimer into the cell. We have used a chemogenomic approach to demonstrate that this is the case. Following expression of the wild type beta(2)-adrenoceptor, isoprenaline but not 1-(3'4'-dihydroxyphenyl)-3-methyl-1-butanone, which does not have significant affinity for the wild type receptor, caused receptor internalization. By contrast, 1-(3'4'-dihydroxyphenyl)-3-methyl-1-butanone, but not isoprenaline that does not have high affinity for the mutated receptor, caused internalization of Asp(113)Serbeta(2)-adrenoceptor. Following co-expression of wild type and Asp(113)Serbeta(2)-adrenoceptors each of isoprenaline and 1-(3'4'-dihydroxyphenyl)-3-methyl-1-butanone caused the co-internalization of both of these two forms of the receptor. Co-expressed wild type and Asp(113)Serbeta(2)-adrenoceptors were able to be co-immunoprecipitated and 1-(3'4'-dihydroxyphenyl)-3-methyl-1-butanone produced internalization of the wild type receptor that was not prevented by the beta-adrenoceptor antagonist propranolol that binds with high affinity only to the wild type receptor. These results demonstrate that agonist occupancy of either single binding site of the beta(2)-adrenoceptor dimer is sufficient to cause internalization of the dimer and that antagonist occupation of one of the two ligand binding sites is unable to prevent agonist-mediated internalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号