首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on the enzymology of apurinic/apyrimidinic (AP) endonucleases from procaryotic and eucaryotic organisms are reviewed. Emphasis will be placed on the enzymes from Escherichia coli from which a considerable portion of our knowledge has been derived. Recent studies on similar enzymes from eucaryotes will be discussed as well. In addition, we will discuss the chemical and physical properties of AP sites and review studies on peptides and acridine derivatives which incise DNA at AP sites.  相似文献   

2.
Sites of base loss in DNA arise spontaneously, are induced by damaging agents or are generated by DNA glycosylases. Repair of these potentially mutagenic or lethal lesions is carried out by apurinic/apyrimidinic (AP) endonucleases. To test current models of AP site recognition, we examined the effects of site-specific DNA structural modifications and an F266A mutation on incision and protein-DNA complex formation by the major human AP endonuclease, Ape. Changing the ring component of the abasic site from a neutral tetrahydrofuran (F) to a positively charged pyrrolidine had only a 4-fold effect on the binding capacity of Ape. A non-polar 4-methylindole base analog opposite F had a <2-fold effect on the incision activity of Ape and the human protein was unable to incise or specifically bind 'bulged' DNA substrates. Mutant Ape F266A protein complexed with F-containing DNA with only a 6-fold reduced affinity relative to wild-type protein. Similar studies are described using Escherichia coli AP endonucleases, exonuclease III and endonuclease IV. The results, in combination with previous findings, indicate that the ring structure of an AP site, the base opposite an AP site, the conformation of AP-DNA prior to protein binding and the F266 residue of Ape are not critical elements in targeted recognition by AP endonucleases.  相似文献   

3.
Two distinct endonucleases from Saccharomyces cerevisiae, specific for apurinic/apyrimidinic sites (AP-endonucleases A and B), have been extensively purified and characterized. Both are free from unspecific and ultraviolet-specific endonucleases and exonucleases. The two enzymes are monomeric proteins of around 24000 daltons. Both are sensitive to ionic strength and most active in the presence of 150 and 100 mM NaCl for AP-endonucleases A and B, respectively. They are not absolutely dependent on divalent cations, since they are insensitive to EDTA, although AP-endonuclease A is activated by Ca2+ or Mg2+ and AP-endonuclease B by Mg2+ only. ATP inhibits the enzymes. AP-endonuclease A reacts optimally between pH 6 and 8, and AP-endonucleases B at pH 8. AP-endonuclease A is more stable at 60 degree C (half-life of 17 min) than B (half-life of 4 min). AP-endonuclease A is insensitive to N-ethylmaleimide or rho-chloromercuribenzoate. AP-endonuclease B is also insensitive to N-ethylmaleimide, but rho-chloromercuribenzoate inhibits its activity.  相似文献   

4.
5.
Two distinct endonucleases from Saccharomyces cerevisiae, specific for apurinic/apyrimidinic sites (AP-endonucleases A and B), have been extensively purified and characterized. Both are free from unspecific and ultraviolet-specific endonucleases and exonucleases. The two enzymes are monomeric proteins of around 24 000 daltons. Both are sensitive to ionic strength and most active in the presence of 150 and 100 mM NaCl for AP-endonucleases A and B, respectively. They are not absolutely dependent on divalent cations, since they are insensitive to EDTA, although AP-endonuclease A is activated by Ca2+ or Mg2+ and AP-endonuclease B by Mg2+ only. ATP inhibits the enzymes. AP-endonuclease A reacts optimally between pH 6 and 8, and AP-endonuclease B at pH 8. AP-endonuclease A is more stable at 60°C (half-life of 17 min) than B (half-life of 4 min). AP-endonucleuase A is insensitive to N-ethylmaleimide or ρ-chloromercuribenzoate. AP-endonuclease B is also insensitive to N-ethylmaleimide, but ρ-chloromercuribenzoate inhibits its activity.  相似文献   

6.
J Pierre  J Laval 《Biochemistry》1980,19(22):5018-5024
Two chromatographically distinct endonucleases from Micrococcus luteus, specific for apurinic and apyrimidinic sites (AP-endonucleases A and B), have been extensively purified and characterized. Both are free from DNA glycosylase, unspecific endonuclease, and phosphatase activities. The two enzymes behave as monomeric proteins of approximately 35000 daltons. In addition to their different chromatographic properties on CM-cellulose, P-cellulose, hydroxylapatite, and DNA--Sepharose, both AP-endonucleases can be distinguished as follows: AP-endonuclease A has an isoelectric point of 4.8, shows a half-life of 4 min at 45 degrees C, reacts optimally at pH 7.5 and has a KM value of 2.3 X 10(-6) M. AP-endonuclease B has a pI of 8.8, is more stable at 45 degrees C (half-life of 10 min), and reacts optimally between pH 6.5 and pH 8.5; its KM value is 3.7 X 10(-6) M.  相似文献   

7.
J A McKenzie  P R Strauss 《Biochemistry》2001,40(44):13254-13261
Apurinic/apyrimidinic endonuclease (AP endo) is a key enzyme in oxidative damage DNA repair. The enzyme, which repairs abasic sites, makes a single nick 5' to the phosphodeoxyribose, leaving a free 3'-hydroxyl. We recently described single turnover kinetics for human recombinant AP endo acting on an oligonucleotide with a single abasic site. We hypothesized that the structural changes induced by the presence of a second abasic site might provide insight into how AP endo recognizes the first abasic site. Here we performed steady state and single turnover experiments using bistranded abasic site substrates, with the second site located on the complementary strand to the one being followed and either opposite to the first or displaced in the 5' direction. All sites on the complementary strand were within half a helical turn of the first. The catalytic efficiency was reduced 80 to 96% and the Kd for substrate binding and dissociation was elevated 40- to 125-fold. The smaller changes occurred when the second site was opposite the first site or displaced by four nucleotides. In addition, if the second abasic site was directly across the helix or displaced by 1 or 3 nucleotides from the first abasic site, cleavage of the first abasic site was subject to apparent substrate inhibition, which did not occur if the second abasic site was displaced by four nucleotides from the first. While a substrate containing a nick without a phosphodeoxyribose on the contralateral strand abasic site did not inhibit nicking of the first strand, a substrate with a nicked abasic site on the contralateral strand was an even stronger inhibitor of enzyme action than an oligonucleotide containing the corresponding abasic site on each strand. Consequently, the inhibitory effect of the second abasic site is probably the result of prior cleavage of the abasic site on the contralateral strand with resulting distortions to the DNA helix that interfere with enzyme binding and/or cleavage.  相似文献   

8.
Apurinic/apyrimidinic (AP) endonucleases are key enzymes involved in the repair of abasic sites and DNA strand breaks. Pathogenic bacteria Mycobacterium tuberculosis contains two AP endonucleases: MtbXthA and MtbNfo members of the exonuclease III and endonuclease IV families, which are exemplified by Escherichia coli Xth and Nfo, respectively. It has been shown that both MtbXthA and MtbNfo contain AP endonuclease and 3′  5′ exonuclease activities. However, it remains unclear whether these enzymes hold 3′-repair phosphodiesterase and nucleotide incision repair (NIR) activities. Here, we report that both mycobacterial enzymes have 3′-repair phosphodiesterase and 3′-phosphatase, and MtbNfo contains in addition a very weak NIR activity. Interestingly, depending on pH, both enzymes require different concentrations of divalent cations: 0.5 mM MnCl2 at pH 7.6 and 10 mM at pH 6.5. MtbXthA requires a low ionic strength and 37°C, while MtbNfo requires high ionic strength (200 mM KCl) and has a temperature optimum at 60 °C. Point mutation analysis showed that D180 and N182 in MtbXthA and H206 and E129 in MtbNfo are critical for enzymes activities. The steady-state kinetic parameters indicate that MtbXthA removes 3′-blocking sugar-phosphate and 3′-phosphate moieties at DNA strand breaks with an extremely high efficiency (kcat/KM = 440 and 1280  μM-1∙min−1, respectively), while MtbNfo exhibits much lower 3′-repair activities (kcat/KM = 0.26 and 0.65 μM-1∙min−1, respectively). Surprisingly, both MtbXthA and MtbNfo exhibited very weak AP site cleavage activities, with kinetic parameters 100- and 300-fold lower, respectively, as compared with the results reported previously. Expression of MtbXthA and MtbNfo reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to methylmethanesulfonate and H2O2 to various degrees. Taken together, these data establish the DNA substrate specificity of M. tuberculosis AP endonucleases and suggest their possible role in the repair of oxidative DNA damage generated by endogenous and host- imposed factors.  相似文献   

9.
E L Ivanov 《Genetika》1991,27(1):5-12
The subject of this review are molecular mechanisms and specificity of mutagenesis induced by apurinic/apyrimidinic (AP) sites representing a characteristic group of so called non-coding DNA lesions. The data available suggest that efficiency and specificity of AP sites-induced mutations depend, primarily, on genome structural organization. This is manifested in existence of DNA sequences highly prone to depurination/depyrimidination as well as in the ability of specific DNA regions to adopt potentially mutagenic conformations. The latter leads to mutations as consequence of AP sites' repair. Secondly, the AP sites-induced mutagenesis depends on functional state of genome, on the ability of replicative/repair cell apparatus to carry out some specific forms of mutagenic DNA repair, in particular, to bypass non-coding DNA lesions under conditions of SOS repair.  相似文献   

10.
X-ray analysis of enzyme–DNA interactions is very informative in revealing molecular contacts, but provides neither quantitative estimates of the relative importance of these contacts nor information on the relative contributions of specific and nonspecific interactions to the total affinity of enzymes for specific DNA. A stepwise increase in the ligand complexity approach is used to estimate the relative contributions of virtually every nucleotide unit of synthetic DNA containing abasic sites to its affinity for apurinic/apyrimidinic endonuclease (APE1) from human placenta. It was found that APE1 interacts with 9–10 nt units or base pairs of single-stranded and double-stranded ribooligonucleotides and deoxyribooligonucleotides of different lengths and sequences, mainly through weak additive contacts with internucleotide phosphate groups. Such nonspecific interactions of APE1 with nearly every nucleotide within its DNA-binding cleft provides up to seven orders of magnitude (ΔG° ~ −8.7 to −9.0 kcal/mol) of the enzyme affinity for any DNA substrate. In contrast, interactions with the abasic site together with other specific APE1–DNA interactions provide only one order of magnitude (ΔG° ~ −1.1 to −1.5 kcal/mol) of the total affinity of APE1 for specific DNA. We conclude that the enzyme's specificity for abasic sites in DNA is mostly due to a great increase (six to seven orders of magnitude) in the reaction rate with specific DNA, with formation of the Michaelis complex contributing to the substrate preference only marginally.  相似文献   

11.
We have developed simple and sensitive assays that distinguish the main classes of apurinic/apyrimidinic (AP) endonucleases: Class I enzymes that cleave on the 3' side of AP sites by beta-elimination, and Class II enzymes that cleave by hydrolysis on the 5' side. The distinction of the two types depends on the use of a synthetic DNA polymer that contains AP sites with 5'-[32P]phosphate residues. Using this approach, we now show directly that Escherichia coli endonuclease IV and human AP endonuclease are Class II enzymes, as inferred previously on the basis of indirect assays. The assay method does not exhibit significant interference by nonspecific nucleases or primary amines, which allows the ready determination of different AP endonuclease activities in crude cell extracts. In this way, we show that virtually all of the Class II AP endonuclease activity in E. coli can be accounted for by two enzymes: exonuclease III and endonuclease IV. In the yeast Saccharomyces cerevisiae, the Class II AP endonuclease activity is totally dependent on a single enzyme, the Apn1 protein, but there are probably multiple Class I enzymes. The versatility and ease of our approach should be useful for characterizing this important class of DNA repair enzymes in diverse systems.  相似文献   

12.
The interaction of human heat shock protein 70 (HSP70) with human apurinic/apyrimidinic endonuclease (HAP1) was demonstrated by coimmunoprecipitation. A combination of HSP70 and HAP1 also caused a shift in the electrophoretic mobility of a DNA fragment containing an apurinic/apyrimidinic site. The functional consequence of the HSP70/HAP1 interaction was a 10-100-fold enhancement of endonuclease activity at abasic sites. The physical and functional interaction between HSP70 and HAP1 did not require the addition of ATP. The association of HSP70 and a key base excision repair enzyme suggests a role for heat shock proteins in promoting base excision repair. These findings provide a possible mechanism by which HSP70 protects cells against oxidative stress.  相似文献   

13.
Endonuclease activity which specifically cleaves baseless (apurinic/apyrimidinic (AP] sites in supercoiled DNA has been purified from mitochondria of the mouse plasmacytoma cell line, MPC-11. Two variant forms separate upon purification; these have small but reproducible differences in catalytic and chromatographic properties, but similar physical properties. Both have a sedimentation coefficient of 4.0, corresponding to a molecular weight of 61,000 (assuming a globular configuration) and a peptide molecular weight of about 65,000 as determined by immunoblot analysis with antiserum raised against the major AP endonuclease from HeLa cells. Thus mitochondrial AP endonuclease appears to be a monomer of about 65 kDa, making it distinguishable from the major AP endonuclease of MPC-11 cells which, like those of other mammalian cells, appears to be a monomer of about 41 kDa. A possible 82-kDa precursor form was also detected by immunoblot analysis of a crude mitochondrial fraction. Mitochondrial AP endonuclease activity is greatly stimulated by divalent cations, has a pH optimum between 6.5 and 8.5, and cleaves the AP site by a class II mechanism to generate a 3'-OH nucleotide residue. These properties resemble those of the major mammalian AP endonucleases but, unlike those enzymes, mitochondrial AP endonuclease activity is neither inhibited by adenine or NAD+ nor stimulated by Triton X-100. Since the mitochondrial activity generates active primer termini for DNA synthesis, it could function in base excision DNA repair; alternatively, it might have a role in eliminating damaged mitochondrial genomes from the gene pool.  相似文献   

14.
DNA repair is essential for cell viability and proliferation. In addition to reactive oxygen produced as a byproduct of their own metabolism, intracellular parasites also have to manage oxidative stress generated as a defense mechanism by the host. The spontaneous loss of DNA bases due to hydrolysis and oxidative DNA damage in intracellular parasites is great, but little is known about the type of DNA repair machineries that exist in these early-branching eukaryotes. However, it is clear, processes similar to DNA base excision repair (BER) must exist to rectify spontaneous and host-mediated damage in Toxoplasma gondii. Here we report that T. gondii, an opportunistic protozoan pathogen, possesses two apurinic/apyrimidinic (AP) endonucleases that function in DNA BER. We characterize the enzymatic activities of Toxoplasma exonuclease III (ExoIII, or Ape1) and endonuclease IV (EndoIV, or Apn1), designated TgAPE and TgAPN, respectively. Over-expression of TgAPN in Toxoplasma conferred protection from DNA damage, and viable knockouts of TgAPN were not obtainable. We generated an inducible TgAPN knockdown mutant using a ligand-controlled destabilization domain to establish that TgAPN is critical for Toxoplasma to recover from DNA damage. The importance of TgAPN and the fact that humans lack any observable APN family activity highlights TgAPN as a promising candidate for drug development to treat toxoplasmosis.  相似文献   

15.
[5'-32P]pdT8d(-)dT7, containing an AP (apurinic/apyrimidinic) site in the ninth position, and [d(-)-1',2'-3H, 5'-32P]DNA, containing AP sites labelled with 3H in the 1' and 2' positions of the base-free deoxyribose [d(-)] and with 32P 5' to this deoxyribose, were used to investigate the yields of the beta-elimination and delta-elimination reactions catalysed by spermine, and also the yield of hydrolysis, by the 3'-phosphatase activity of T4 polynucleotide kinase, of the 3'-phosphate resulting from the beta delta-elimination. Phage-phi X174 RF (replicative form)-I DNA containing AP (apurinic) sites has been repaired in five steps: beta-elimination, delta-elimination, hydrolysis of 3'-phosphate, DNA polymerization and ligation. Spermine, in one experiment, and Escherichia coli formamidopyrimidine: DNA glycosylase, in another experiment, were used to catalyse the first and second steps (beta-elimination and delta-elimination). These repair pathways, involving a delta-elimination step, may be operational not only in E. coli repairing its DNA containing a formamido-pyrimidine lesion, but also in mammalian cells repairing their nuclear DNA containing AP sites.  相似文献   

16.
  • 1.1. Three kinds of apurinic/apyrimidinic (AP) DNA endonucleases, APcI, APcII, APcIII were purified from rat liver chromatin.
  • 2.2. Molecular weights of APcI, APcII and APcIII were 30,000, 42,000 and 13,000 Da, which have isoelectric points of 7.2, 6.3 and 6.2, respectively.
  • 3.3. Mg2+ was essential for the activities of these 3 enzymes, and sulfhydryl compounds (βercaptoethanol) had a stimulatory effect on the enzyme activities while N-ethylmaleimide and HgCl2 inhibited the enzyme activity.
  • 4.4. Km values of APcI, APcII and APcIII for AP site of DNA were 0.53, 0.27 and 0.36 μM, respectively, and AMP was the most potent inhibitor to these three enzymes among nucleotides tested.
  相似文献   

17.
18.
Contradictory data have recently been published from two different laboratories on the presence vs absence of an intrinsic endonucliolytic activity of E. coli exonuclease III at apurinic sites in double-stranded DNA. It is shown here that an endonuclease activity of this specificity co-chromatographs exactly with exonuclease III on phosphocellulose and Sephadex G-75 columns, indicating that the endonuclease and exonuclease activities are due to the same enzyme. In addition, another E. coli endonuclease specific for apurinic sites exists, which can be separated from exonuclease III by the same chromatographic procedures.  相似文献   

19.
20.
Addition of thiol compounds containing an anionic group to the 3'-terminal unsaturated sugar of the 5' fragment obtained from an oligonucleotide containing an AP site cleaved by beta-elimination, can be followed by gel electrophoresis. The technique enables to distinguish between two mechanisms of cleavage of the C3'-O-P bond 3' to an AP site: hydrolysis or beta-elimination. Addition of thiols to the double-bond of the 3'-terminal sugar resulting from beta-elimination prevents a subsequent delta-elimination. The interpretation of the action of enzymes that start by nicking 3' to AP sites must take into account the presence or absence of thiols in the reaction medium. In living cells, thiols might influence the pathways followed by the repair processes of AP site-containing DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号