首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Ethylene-induced abscission in flower pedicels of Nicotiana tabacum L. cv. Little Turkish causes a progressive increase in peroxidase activity during the first 4 hours of a 5-hour time course ethylene treatment period, with decrease in peroxidase activity occurring between 4 hours and 5 hours, when the supernatant extracts of abscission zone segments are tested spectrophotometrically for peroxidase activity, using guaiacol and hydrogen peroxide. Nonethylene-treated tissue has a much lower level of peroxidase activity over the same time course period. In ethylene-treated tissue the decline in break-strength correlates with the beginning of increase in peroxidase activity (3 hours). When the abscission zone area of the pedicel is further divided into proximal, abscission zone, and distal portions, respectively, the ethylene-treated tissue has the highest peroxidase activity in the abscission zone portion, with the maximum peak occurring at 4 hours and decreasing between 4 hours and 5 hours. Acrylamide gel electrophoresis of enzyme breis from ethylene-treated aand nonethylene-treated plants reveals that no new peroxidase isozymes are formed in response to ethylene, indicating an increase in the amount of one or in both of the two already existing isozyme banding patterns. The measurement of protein in the proximal, abscission zone, and distal segments, over a 5-hour ethylene treatment period, indicates that it is being translocated in a distal to proximal direction in the abscission zone pedicel. The possible participatory role for peroxidase in ethylene-induced tobacco flower pedicel abscission are discussed.  相似文献   

2.
3.
The activity of pectin esterase and cellulase in abscission of citrus explants was studied. No relation was established between pectin esterase and abscission, while cellulase activity was markedly increased before abscission and for a certain period after excision. IAA and cycloheximide delay abscission and cellulase activity, while ethylene and, to a lesser extent, GA3 accelerate them. Application of cycloheximide during the lag period and before cellulase activity can be measured, inhibits to a certain extent the formation of cellulase. An escape from the inhibitory effect of cycloheximide is detected when inhibitor is supplied at the end of the lag period.  相似文献   

4.
Peroxidase-containing enzyme supernatant preparations of tobaccoabscission zone flower pedicel tissue sections of ethylene-treatedand untreated Nicotiana tabacum L. plants were assayed for u.v.absorption spectra with and without the addition of IAA. Theu.v. spectral absorption of peroxidase-catalysed IAA oxidationindicated that there is not an appreciable difference in absorbancepeaks in the ethylene-treated plants compared with untreatedcontrols, in the presence of added IAA; however, the ethylene-treatedtissues alone show different absorption peak values in the 1,2, 3, 4, 4.5, and 5 h samples. These results are discussed inrelation to ethylene-induced peroxidase activity in tobaccoflower pedicel abscission zone tissue homogenates.  相似文献   

5.
During the first eight weeks after setting young citrus fruits gradually lose their ability to abscise at the abscission zone between the stem and the pedicel; in fruits older than eight weeks abscission occurs at the calyx area. The activity of cellulase and polygalacturonase in the two abscission zones was markedly increased before and during abscission, and was localized mainly in the abscission zone. Ethylene accelerated the increase in enzymic activity after an 8- to 10-h lag period; 2,4-D delayed abscission and enzymic activity when applied during the first 24 h after excision. During this period 2,4-D also partly suppressed the enhancing effect of ethylene. Early application of cyclo-heximide inhibited the formation of the enzymes and thus abscission was delayed to a certain extent. Although there are some indications that the relationship between enzymic activity and abscission is a complex one, the data presented indicate that cellulase and polygalacturonase play a significant role in abscission of citrus fruits at various developmental stages. Both enzymes act almost simultaneously and are equally controlled by ethylene and 2,4-D.  相似文献   

6.
Treatment with ethylene accelerated the abscission of branches of Azolla filiculoides plants. An Azolla plantlet treated with ethylene at 10 microl liter(-1) divided into 4-5 fragments after a lag period of 6-8 h. Ethylene-induced abscission was effectively inhibited by cycloheximide and was associated with an increase in the activities of cellulase and polygalacturonase. At the fracture surface abscised after treatment with ethylene, dissolution of the primary walls of the abscission zone cells was apparent. However, the middle lamella between abscission zone cells was still present. Immunoelectron microscopy using anti-unesterified pectin (JIM5) and anti-methylesterified pectin (JIM7) monoclonal antibodies revealed the presence of both JIM5 and JIM7 epitopes in the wall between abscission zone cells of branches before abscission occurred. In the middle lamella remaining after ethylene-induced abscission, only JIM7 epitopes were observed. The features of ethylene-induced abscission described herein were different from those of the rapid abscission induced by sodium azide, which implies that they are mediated by different mechanisms. The possible mechanisms are discussed.  相似文献   

7.
Sagee O  Goren R  Riov J 《Plant physiology》1980,66(4):750-753
The question whether abscisic acid (ABA) induces cellulase and polygalacturonase activity and, hence, abscission directly or whether its action is mediated by C2H4 was studied in citrus (Osbeck var. Shamouti) leaf explants using aminoethoxyvinyl glycine (AVG), an inhibitor of C2H4 biosynthesis. ABA in concentrations of 10 micromolar and higher induced C2H4 production and accelerated abscission. AVG inhibited C2H4 formation, activity of cellulase and polygalacturonase, and abscission in ABA-treated explants. AVG did not inhibit the increase in the activity of the cell-wall degrading enzymes or abscission in a saturating level of externally supplied C2H4. This indicates that the effect of AVG resulted from inhibition of the formation of endogenous ethylene. The data indicate that in citrus leaf explants the induction of the activity of cellulase and polygalacturonase and abscission by ABA is mediated by C2H4.  相似文献   

8.
9.
Nitrocellulose tissue prints immunoblotted with 9.5 cellulase antibody were used to demonstrate areas of cellulase localization within Phaseolus vulgaris explants on exposure to ethylene. The 9.5 cellulase was induced in the distal and proximal abscission zone and in the stem. In both abscission zones, the 9.5 cellulase was found in the cortical cells of the separation layer, which develops as a narrow band of cells at the place where fracture occurs. The enzyme was also found associated with the vascular traces of the tissues adjacent to the separation layer extending through the first few millimeters at each side of the separation layer. The two abscission zones differed in the way that cellulase distributed through the separation layer as abscission proceeded. In the distal zone, cellulase appeared first in the cells of the separation layer adjacent to vascular traces and extended toward the periphery. In the proximal zone, 9.5 cellulase accumulated first in the cortical cells that lie in the adaxial side and then extended to the abaxial side. In response to ethylene, 9.5 cellulase was also induced in the vascular traces of the stem and the pulvinus without developing a separation layer. The role of 9.5 cellulase in the vascular traces is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblotting with 9.5 cellulase antibody identified the same 51-kilodalton protein in both abscising and nonabscising tissues. Therefore, the determinant characteristic of the abscission process is the induction of 9.5 cellulase by cortical cells in the separation layer, and this implies that these cells have a unique mechanism for initiating 9.5 cellulase synthesis.  相似文献   

10.
The speed of ethylene-induced leaf abscission in cotton (Gossypium hirsutum L. cv LG-102) seedlings is dependent on leaf position (i.e. physiological age). Fumigation of intact seedlings for 18 hours with 10 microliters per liter of ethylene resulted in 40% abscission of the still-expanding third true (3°) leaves but had no effect on the fully expanded first true (1°) leaves. After 42 hours of fumigation with 50 microliters per liter of ethylene, total abscission of the 3° leaves occurred while <50% abscission of the 1° leaves was observed. On a leaf basis, endogenous levels of free IAA in 1° leaves were approximately twice those of 3° leaves. Free IAA levels were reduced equally (approximately 55%) in both leaf types after 18 hours of ethylene (10 microliters per liter) treatment. Ethylene treatment of intact seedlings inhibited the basipetal movement of [14C]IAA in petiole segments isolated from both leaf types in a dose-dependent manner. The auxin transport inhibitor N-1-naphthylphthalamic acid increased the rate and extent of ethylene-induced leaf abscission at both leaf positions but did not alter the relative pattern of abscission. Abscission-zone explants prepared from 3° leaves abscised faster than 1° leaf explants when exposed to ethylene. Ethyleneinduced abscission of 3° explants was not appreciably inhibited by exogenous IAA while 1° explants exhibited a pronounced and protracted inhibition. The synthetic auxins 2,4-D and 1-naphthaleneacetic acid completely inhibited ethylene-induced abscission of both 1° and 3° explants for 40 hours. It is proposed that the differential abscission response of cotton seedling leaves is primarily a result of the limited abscission-inhibiting effects of IAA in the abscission zone of the younger leaves.  相似文献   

11.
The effects of accelerating and retarding amounts of abscisin (Ab II), auxin (IAA), and gibberellin (GA3) on abscission in explants of 14-day-old cotton (Gossypium hirsutum L.) seedlings were studied. Applications of Ab II, a potent accelerant (0.025 μg/abscission zone), resulted in a lysigenous breakdown of cells in a weakly defined separation layer in contrast to GA3, an accelerant (0.01 μg/abscission zone), and IAA, a retardant (0.125 μg/abscission zone), which resulted in a schizogenous type of breakdown of cells in a well-defined separation layer, three or more rows of cells wide. Separation usually commenced adaxially with GA3, abaxially with IAA and in the controls, and either ad- or abaxially with Ab II. Cell division preceded abscission, the number of cells increasing greatly within 24 hr after GA3 treatment. Tyloses formed in vessel elements throughout the explant, both distal and proximal to the plane of separation in all treatments and in the controls. The retardant, IAA, appeared to stimulate tyloses formation. Tylosis development was not causal but was secondarily related to abscission.  相似文献   

12.
Abstract The changes in the levels of two different isozymes of cellulase (EC 3.2.1.4) have been followed during the abscission of the primary leaves of bean (Phaseolus vulgaris c.v. Red Kidney), using antibodies raised against the 9.5 form of the enzyme. Data from both radioimmune and direct assay show that the 9.5 form of cellulase is undetectable prior to the induction of abscission. After a 12 h lag this isozyme increases in activity, the increase preceding a decrease in integrity of the abscission zone cell walls. The results are consistent not only with the view that this specific isozyme is involved in wall hydrolysis but also with previous data which showed that cellulase is synthesized ‘de novo’. The 4.5 isozyme of cellulase is more widely spread throughout the plant, being most active in young tissues. During abscission the activity of this isozyme in the abscission layer falls and consequently it is not thought to be involved directly in the abscission process.  相似文献   

13.
The physiological and molecular events of ethylene‐induced abscission in mature fruit calyx, laminar and floral abscission zones of cv. Valencia orange were examined. Continuous exposure of fruit explants to 5 µl 1−1 ethylene for 2 to 40 h resulted in marked increases in endo‐1,4‐β‐glucanase (cellulase) and polygalacturonase (PG) activities in calyx abscission zones. Two abscission‐related cellulases and one PG were found. The major peak of cellulase activity corresponded to a pI of 8.0 and molecular weight of 51 kDa, whereas the minor cellulase peak had a pI of 5.5. The abscission polygalacturonase had a pI of 5.5. Calyx abscission zone RNA was amplified with degenerate primers based on sequence of the purified Valencia orange calyx abscission cellulase, and cloned. The two partial cellulase cDNA clones were 59% identical at the nucleotide level. Genomic Southern analysis suggested that Valencia orange contained two groups of cellulase genes. A full‐length cDNA clone from each group was isolated from a cDNA library prepared from ethylene‐induced calyx abscission zone mRNA. Both genes were expressed in ethylene‐induced calyx, laminar and floral abscission zones, but were not expressed in non‐induced abscission zones or mature leaves treated with or without ethylene, young bark or young fruit of Valencia.  相似文献   

14.
研究了无核白葡萄(Vitis vinifera L.)采后贮藏过程中离区纤维素酶、果胶酯酶(Pectinesterase,PE)、多聚半乳糖醛酸酶(polygalacturonase,PG)、脂氧合酶(lipoxygenase,LOX)和过氧化物酶(peroxidase,POD)活性的变化与落粒的关系及植物生长调节物质对其的影响。结果表明,葡萄在贮藏过程中,伴随浆果落粒的增加,离区纤维素酶、PG、LOX、POD活性升高,PE活性下降。离区纤维素酶、PG、LOX等酶的活性与葡萄落粒程度之间呈显著正相关。外源ABA和CEPA处理能增强离区纤维素酶、PG、LOX活性,促进落粒;GA3,IAA处理则能抑制离区纤维素酶、PG、LOX活性,减轻落粒。ABA对落粒的促进效应及GA3对纤维素酶活性和落粒的抑制效应尤为明显,表明GA3与ABA比值在葡萄采后落粒过程中起重要的作用。  相似文献   

15.
Cell Wall Solubilization in Pedicel Abscission of Begonia Flower Buds   总被引:1,自引:0,他引:1  
Effects of metabolic inhibitors and growth regulators on the course of abscission and on the activities of cell wall solubilizing enzymes were studied in pedicel explants of Begonia flower buds. Actinomycin D, chloramphenicol and 2,4-dinitrophenol slightly retarded abscission, whereas cycloheximide exerted a strong inhibition if applied until 10.5 h after explant excision. Indoleacetic acid retarded and ethylene promoted abscission and cell wall solubilization. However, the activities of cell wall solubilizing enzymes did not correspond with the course of abscission. No polygalacturonase and pectic acid and pectin transeliminases could be detected in the abscission zone during abscission, whereas a low pectin methylesterase activity did not change. Endo- and exocellulase activities did not increase until about 10 h after the onset of abscission, indicating that they are the result rather than the cause of abscission.  相似文献   

16.
Post-harvest needle loss is a major problem for balsam fir and other Christmas tree species. Recent evidence has implicated ethylene as a signal responsible for post-harvest needle abscission, but enzymological changes remain unknown. The objective of this study was to identify and quantify cellulase activity associated with endogenous and exogenous ethylene-induced abscission. An experiment was designed with three treatments (control, endogenous ethylene, or exogenous ethylene) with five replicates. Key response variables include needle retention duration, xylem pressure potential, ethylene evolution rate, and cellulase activity. Two complimentary methods were used to assess cellulase activity: a cellulose plate digestion and zymography. The results confirm ethylene as a signal for post-harvest abscission and identify ethylene-induced cellulase. Ethylene evolution was typically between 15 and 16 μL g−1 h−1, but there was no difference among the three treatments. However, exogenous ethylene significantly decreased needle retention by 60% and resulted in a sixfold decrease in xylem pressure potential. In addition, cellulase activity increased by 8- and 12-fold in endogenous and exogenous ethylene-induced abscission, respectively, compared to the control. Identification of ethylene-induced cellulase activity has increased our understanding of the post-harvest needle abscission process and confirms ethylene’s role as a signal molecule.  相似文献   

17.
Cotton (Gossypium hirsutum L. cv LG102) seedlings raised from seeds exposed to 100 [mu]M norflurazon (NFZ) during imbibition contained reduced levels of free abscisic acid (ABA) and were visibly achlorophyllous. Exposure of untreated cotton seedlings to ethylene concentrations >1 [mu]L/L for 24 h resulted in cotyledon abscission. In contrast, exposure of NFZ-treated seedlings to concentrations of ethylene [less than or equal to]50 [mu]L/L elicited no cotyledon abscission. Application of ABA, an ABA analog, or jasmonic acid to NFZ-treated seedlings restored ethylene-induced abscission. Isolated cotyledonary node explants prepared from NFZ-treated seedlings exhibited an altered dose-response pattern of ethylene-induced petiole abscission. Endogenous levels of free IAA were unaltered in NFZ-treated seedlings. Ethylene treatment (50 [mu]L/L, 24 h) had no effect on free indoleacetic acid (IAA) levels in either control or NFZ-treated seedlings. Levels of conjugated (ester plus amide) IAA were substantially increased in NFZ-treated seedlings regardless of ethylene treatment. These results indicate that endogenous ABA plays an essential, but physiologically undefined, role in ethylene-induced cotyledon abscission in cotton.  相似文献   

18.
Ethylene-induced abscission in leaf and fruit explants of peach involves different enzymes. In leaves abscission is accompanied by increased occurrence of cellulase forms differing in isoelectric point (pI 6.5 and 9.5). A polypeptide with a molecular mass of 51 kDa gives in a western blot a strong cross-reaction with an antibody raised against a maturation cellulase from avocado fruit. Cellulase activity is also found in abscising fruit explants but the amount is very low compared to that of the leaf explants. A northern analysis with a cellulase clone from avocado reveals the presence of two hybridizing mRNAs with a size of 2.2 kb and 1.8 kb, respectively. The steady-state level of the 2.2 kb mRNA is significantly increased by treatment with ethylene.Polygalacturonases are not detected in abscising leaves, but are strongly induced by ethylene in fruit explants. Of the three forms found, two are exopolygalacturonases while the third is an endoenzyme. Ethylene activates preferentially the endoenzyme and the basic exoenzyme but depresses the acid exopolygalacturonases. A northern analysis carried out with a cDNA coding for tomato endopolygalacturonase shows hybridization only with one endopolygalacturonase mRNA from in the fruit abscission zone. Treatment with ethylene causes an increase in the steady-state level of this mRNA. The differences in the enzyme patterns observed in fruit and leaf abscission zones and a differential enzyme induction suggest the feasibility to regulate fruit abscission in peach with the aid of antisense RNA genes.  相似文献   

19.
The role of ethylene and 2,4-D in the abscission process, and the induction of cellulase isoenzymes in the abscission zones of Citrus fruit at two physiological stages of fruit development, were studied using a new staining technique for the detection of cellulase isoenzymes in polyacrylamide gels following electrophoretic separation. Four to seven isoenzymes were detected in the shoot-peduncle (zone A) and peduncle-fruit (zone C) abscission zones; at least two of them could be detected at excision time, and of these at least one could not be connected with abscission. In the young fruit, ethylene enhanced and 2,4-D delayed both abscission and the formation of several isoenzymes. In the older fruit, ethylene enhanced and 2,4-D delayed the formation of isoenzymes at a time where no abscission occurred any more in zone A. A slower but significant increase in most of the isoenzyme activity detected was also observed in abscission zone A of untreated older fruit explants after excision. These results fully agree with those reported earlier in relation to total cellulase and polygalacturonase activity (Greenberg et al., Physiol. Plant. 34: 1, 1975) tested at the same stages of fruit development. It is suggested, that the generality of the concept that a rise in hydrolytic enzymes in the abscission zone is necessarily followed by separation of the organ should be re-evaluated.  相似文献   

20.
Ethylene biosynthesis in peach fruitlet abscission   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号