首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
A number of homeobox genes have been found to be expressed in skin and its appendages, such as scale and feather, and appear to be candidates for the regulation of the development of these tissues. We report that the proline-rich divergent homeobox gene Hex is expressed during development of chick embryonic skin and its appendages (scale and feather). In situ hybridization analysis revealed that, during development of the skin, a transient expression of the Hex gene was observed. While the expression of Hex in the dermis was closely correlated with proliferation activity of epidermal basal cells, that in the epidermis was related to a suppression of epidermal differentiation. When dermal fibroblasts were transfected with Hex, stimulation of both DNA synthesis and proliferation of the epidermal cells followed by two-fold scale ridge elongation and increase in epidermal area was observed during culture of the skin, whereas epidemal keratinization was not affected. This is the first study to demonstrate that Hex is expressed during development of the skin and its appendages and that its expression in the dermal cells regulates epidermal cell proliferation through epithelial mesenchymal interaction.  相似文献   

5.
Pan MH  Du J  Zhang JY  Huang MH  Li T  Cui HJ  Lu C 《DNA and cell biology》2011,30(10):763-770
The flap endonuclease-1 (FEN-1) gene is involved in DNA replication and repair, and it maintains genomic stability as well as the accuracy of DNA replication under normal growth conditions. However, FEN-1 also plays an important role in apoptosis and cancer development. We cloned the BmFEN-1 gene from Bombyx mori, which was 1343?bp in length and possessed an 1143?bp ORF (123-1266). It consists of seven introns and eight exons that encode a protein with 380 amino acids that has the typical XPG domain. The N-terminal motif is located at amino acids 95-105, and the proliferating cell nuclear antigen interaction motif is located at amino acids 337-344. RNA interference-mediated reduction of BmFEN-1 expression induced cell cycle arrest in S phase in BmE-SWU1?cells. These results suggest that BmFEN-1 can inhibit apoptosis and promote cell proliferation.  相似文献   

6.
The transforming growth factor (TGF)-β inducible early gene (TIEG)-1 is implicated in the control of cell proliferation, differentiation, and apoptosis in some cell types. Since TIEG1 functioning may be associated with TGF-β, a suppressor of myogenesis, TIEG1 is also likely to be involved in myogenesis. Therefore, we investigated the function of TIEG1 during myogenic differentiation in vitro using the murine myoblasts cell line, C2C12. TIEG1 expression increased during differentiation of C2C12 cells. Constitutive expression of TIEG1 reduced survival and decreased myotube formation. Conversely, knocking down TIEG1 expression increased the number of viable cells during differentiation, and accelerated myoblast fusion into multinucleated myotubes. However, expression of the myogenic differentiation marker, myogenin, remained unaffected by TIEG1 knockdown. The mechanism underlying these events was investigated by focusing on the regulation of myoblast numbers after induction of differentiation. The knockdown of TIEG1 led to changes in cell cycle status and inhibition of apoptosis during the initial stages of differentiation. Microarray and real-time PCR analyses showed that the regulators of cell cycle progression were highly expressed in TIEG1 knockdown cells. Therefore, TIEG1 is a negative regulator of the myoblast pool that causes inhibition of myotube formation during myogenic differentiation.  相似文献   

7.
8.
We studied the expression of FREK (fibroblast growth factor receptor-like embryonic kinase), a new receptor recently cloned from quail embryo, during the differentiation of skeletal muscle satellite cells and epiphyseal growth-plate chondrocytes. Although FREK mRNA was expressed in both cell types, satellite cells expressed higher levels of this mRNA than chondrocytes. FREK gene expression was found to be modulated by b-FGF in a biphasic manner: low concentrations increased expression, whereas high concentrations attenuated it. In both cell cultures, the levels of FREK mRNA declined during terminal differentiation. Moreover, retinoic acid (RA), which induces skeletal muscle satellite cells to differentiate, also caused a reduction in FREK gene expression in these cells. Induction of chondrocyte differentiation with ascorbic acid was monitored by a decrease in collagen type II gene expression and an increase in alkaline phosphatase activity. Satellite cell differentiation was marked by morphological changes as well as by increased sarcomeric myogenin content and creatine kinase activity and changes in the expression of the regulatory muscle-specific genes, MyoD and myogenin. DNA synthesis in both cell types was stimulated by b-FGF. However, in satellite cells, the response was bell-shaped, peaking at 1 ng/ml b-FGF, whereas in chondrocytes, higher levels of b-FGF were needed. b-FGF-dependent DNA synthesis in satellite cells was decreased by RA at concentrations over 10-7M . The observed correlation between the level of FREK gene expression and various stages of differentiation, its modulation by b-FGF and RA, as well as the correlation between FREK gene expression and the physiological response to b-FGF, suggest that this specific FGF receptor plays an important role in muscle and cartilage cell differentiation.  相似文献   

9.
The structure-specific FEN-1 endonuclease has been implicated in various cellular processes, including DNA replication, repair and recombination. In vertebrate cells, however, no in vivo evidence has been provided so far. Here, we knocked out the FEN-1 gene (FEN1) in the chicken DT40 cell line. Surprisingly, homozygous mutant (FEN1–/–) cells were viable, indicating that FEN-1 is not essential for cell proliferation and thus for Okazaki fragment processing during DNA replication. However, compared with wild-type cells, FEN1–/– cells exhibited a slow growth phenotype, probably due to a high rate of cell death. The mutant cells were hypersensitive to methylmethane sulfonate, N-methyl-N′-nitro-N-nitrosoguanidine and H2O2, but not to UV light, X-rays and etoposide, suggesting that FEN-1 functions in base excision repair in vertebrate cells.  相似文献   

10.
Tan XX  Rose K  Margolin W  Chen Y 《Biochemistry》2004,43(4):1111-1117
Rapid emergence of antibiotic-resistant bacterial pathogens has created urgent demand for the discovery and development of new antibacterial agents directed toward novel targets. Antisense oligodeoxynucleotides (AS-ODN) and their modified forms have been utilized to block gene expression in bacterial cells, showing potential for developing highly specific and efficacious antibacterial agents. In this study, a tetracycline-regulated expression vector was developed for generating single-stranded DNA (ssDNA) of a desired target sequence in bacterial cells. This inducible ssDNA expression vector was tested for producing a DNA enzyme designed to specifically cleave ftsZ mRNA. Our results indicate that the expressed DNA enzyme molecules not only repress ftsZ gene expression and but also inhibit bacterial cell proliferation. Although we believe that the cleavage of ftsZ mRNA by the expressed DNA enzyme molecules is responsible for the inhibitory effects on ftsZ gene expression and bacterial cell proliferation, the antisense mechanism could also be responsible for the biological effects. The ability of this ssDNA expression system to selectively modulate gene expression may provide a powerful strategy in determining the contribution of a given gene product to bacterial growth or pathogenesis and opens a new venue for developing antibacterial agents.  相似文献   

11.
12.
Flap endonuclease 1 (FEN-1) is a 5'-3' flap exo-/endonuclease that plays an important role in Okazaki fragment maturation, nonhomologous end joining of double-stranded DNA breaks, and long patch base excision repair. Here, we demonstrate that the wild type FEN-1 binds tightly to chromatin in conjunction with proliferating cell nuclear antigen (PCNA) recruitment after MMS treatment, and the nuclease-defective FEN-1 increased the sensitivity of the cells to methylmethane sulfonate (MMS) and to UV light but not to ionizing radiation. In contrast, the cells expressing the nuclease-defective and PCNA binding-defective double mutant FEN-1 exhibited sensitivities similar to those in the cells expressing the wild type FEN-1. MMS treatment caused a prolonged delay of S phase progression and impairment in colony-forming activity of cells expressing nuclease-defective FEN-1. A comet assay demonstrated that DNA repair after MMS or UV treatment was impaired in the cells expressing nuclease-deficient FEN-1 but not in the cells with double-mutated FEN-1. Taken together, these findings suggest that FEN-1 plays an essential role in the DNA repair processes in mammalian cells and that this activity of FEN-1 is PCNA-dependent.  相似文献   

13.
14.
15.
16.
Willer GB  Lee VM  Gregg RG  Link BA 《Genetics》2005,170(4):1827-1837
The zebrafish perplexed mutation disrupts cell proliferation and differentiation during retinal development. In addition, growth and morphogenesis of the tectum, jaw, and pectoral fins are also affected. Positional cloning was used to identify a mutation in the carbamoyl-phosphate synthetase2-aspartate transcarbamylase-dihydroorotase (cad) gene as possibly causative of the perplexed mutation and this was confirmed by gene knockdown and pyrimidine rescue experiments. CAD is required for de novo biosynthesis of pyrimidines that are required for DNA, RNA, and UDP-dependent protein glycosylation. Developmental studies of several vertebrate species showed high levels of cad expression in tissues where mutant phenotypes were observed. Confocal time-lapse analysis of perplexed retinal cells in vivo showed a near doubling of the cell cycle period length. We also compared the perplexed mutation with mutations that affect either DNA synthesis or UDP-dependent protein glycosylation. Cumulatively, our results suggest an essential role for CAD in facilitating proliferation and differentiation events in a tissue-specific manner during vertebrate development. Both de novo DNA synthesis and UDP-dependent protein glycosylation are important for the perplexed phenotypes.  相似文献   

17.
Human peripheral lymphocytes activated with concanavalin A and phorbol myristate ester exhibit an increase in glycolysis on a time-course similar to that for DNA synthesis. Elevated glycolysis is accompanied by increased specific activities of the glycolytic enzymes. Increased enzyme activities are accounted for by the appearance of specific isoenzyme forms (muscle forms) normally expressed in rapidly growing tumor cells or in growth-stimulated cells. In the present study we analyzed the expression of the glycolytic isoenzymes during cell cycle progression of activated human lymphocytes using two-parameter (DNA and protein) flow cytometry. Time-course studies and analysis of subpopulations prepared by elutriation centrifugation showed that the inducible isoenzymes are expressed at low levels or not at all in G0 cells. They are expressed first during the G0 to G1 transition or in early G1. However, expression increases throughout G1, reaching a maximum in S-phase. Thus, induction of glycolytic isoenzymes provides an excellent marker of T-cell activation and progression toward DNA synthesis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号