首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The mature form of L-Phe oxidase of Pseudomonas sp. P-501 (PAOpt) catalyzes the oxygenative decarboxylation of L-Phe and the oxidative deamination of L-Met, and is highly specific for L-Phe. The crystal structures of PAOpt individually complexed with L-Phe and L-Met and the properties of the active site mutants were investigated to clarify the structural basis of the substrate and reaction specificities of the enzyme. The benzene ring of L-Phe is packed in six hydrophobic amino acid side chains versus the two hydrophobic side chains of L-amino acid oxidase (LAO, pdb code: 2jb2); the distance between the substrate Cα atom and water is shorter in the PAOpt-L-Met complex than in the PAOpt-L-Phe complex; and the mutation of substrate carboxylate-binding residues (Arg143 and Tyr536) causes the enzyme to oxidize L-Phe and decreases the charge-transfer band with L-Phe. These results suggest that (i) the higher substrate specificity of PAOpt relative to LAO is derived from the compact hydrophobic nature of the PAOpt active site and (ii) the reactivity of the PAOpt charge-transfer complex with water or oxygen determines whether the enzyme catalyzes oxidation or oxygenation, respectively.  相似文献   

2.
The nucleotide sequence encoding L-phenylalanine oxidase (deaminating and decarboxylating) (PAO) from Pseudomonas sp. P-501 was determined. The open reading frame is arranged in the order of prosequence, alpha subunit, dipeptide and beta subunit from the 5'- to 3'-end. Expression of the gene in Escherichia coli showed that without the prosequence, PAO is produced in small quantity as a soluble form with no visible absorption, but with the prosequence (proPAO), PAO is highly expressed and yellow. The purified proPAO contained one mol of FAD per mol of proPAO polypeptide, but had no catalytic activity. Treatment of proPAO with a mixture of Pronase and trypsin converted the noncatalytic proPAO to the catalytic form, and the Pronase-trypsin-treated proPAO showed kinetic and spectral properties comparable to the native enzyme. These results suggest that in Pseudomonas, PAO is expressed as a proenzyme that is processed by proteolysis to the active form.  相似文献   

3.
A critical event in protein translocation across the endoplasmic reticulum is the structural transition between the closed and open conformations of Sec61, the eukaryotic translocation channel. Channel opening allows signal sequence insertion into a gap between the N- and C-terminal halves of Sec61. We have identified a gating motif that regulates the transition between the closed and open channel conformations. Polar amino acid substitutions in the gating motif cause a gain-of-function phenotype that permits translocation of precursors with marginally hydrophobic signal sequences. In contrast, hydrophobic substitutions at certain residues in the gating motif cause a protein translocation defect. We conclude that the gating motif establishes the hydrophobicity threshold for functional insertion of a signal sequence into the Sec61 complex, thereby allowing the wild-type translocation channel to discriminate between authentic signal sequences and the less hydrophobic amino acid segments in cytosolic proteins. Bioinformatic analysis indicates that the gating motif is conserved between eubacterial and archaebacterial SecY and eukaryotic Sec61.  相似文献   

4.
Tsai SC  Lu H  Cane DE  Khosla C  Stroud RM 《Biochemistry》2002,41(42):12598-12606
Modular polyketide synthases (PKSs) synthesize the polyketide cores of pharmacologically important natural products such as erythromycin and picromycin. Understanding PKSs at high resolution could present new opportunities for chemoenzymatic synthesis of complex molecules. The crystal structures of macrocycle-forming thioesterase (TE) domains from the picromycin synthase (PICS) and 6-deoxyerythronolide B synthase (DEBS) were determined to 1.8-3.0 A with an R(crys) of 19.2-24.4%, including three structures of PICS TE (crystallized at pH 7.6, 8.0, and 8.4) and a second crystal form of DEBS TE. As predicted by the previous work on DEBS TE [Tsai, S. C., et al. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 14808-14813], PICS TE contains an open substrate channel and a hydrophobic dimer interface. Notwithstanding their similarity, the dimer interfaces and substrate channels of DEBS TE and PICS TE reveal key differences. The structural basis for the divergent substrate specificities of DEBS TE and PICS TE is analyzed. The size of the substrate channel increases with increasing pH, presumably due to electrostatic repulsion in the channel at elevated pH. Together, these structures support previous predictions that macrocycle-forming thioesterases from PKSs share the same protein fold, an open substrate channel, a similar catalytic mechanism, and a hydrophobic dimer interface. They also provide a basis for the design of enzymes capable of catalyzing regioselective macrocyclization of natural or synthetic substrates. A series of high-resolution snapshots of a protein channel at different pHs is presented alongside analysis of channel residues, which could help in the redesign of the protein channel architecture.  相似文献   

5.
MscL is a bacterial mechanosensitive channel that is activated directly by membrane stretch. Although the gene has been cloned and the crystal structure of the closed channel has been defined, how membrane tension causes conformational changes in MscL remains largely unknown. To identify the site where MscL senses membrane tension, we examined the function of the mutants generated by random and scanning mutagenesis. In vitro (patch-clamp) and in vivo (hypoosmotic-shock) experiments showed that when a hydrophilic amino acid replaces one of the hydrophobic residues that are thought to make contact with the membrane lipid near the periplasmic end of the M1 or M2 transmembrane domain, MscL loses the ability to open in response to membrane tension. Hydrophilic (asparagine) substitution of the other residues in the lipid-protein interface did not impair the channel's mechanosensitivity. These observations suggest that the disturbance of the hydrophobic interaction between the membrane lipid and the periplasmic rim of the channel's funnel impairs the function of MscL.  相似文献   

6.
The gene encoding subtilisin-like protease T. kodakaraensis subtilisin was cloned from a hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. T. kodakaraensis subtilisin is a member of the subtilisin family and composed of 422 amino acid residues with a molecular weight of 43,783. It consists of a putative presequence, prosequence, and catalytic domain. Like bacterial subtilisins, T. kodakaraensis subtilisin was overproduced in Escherichia coli in a form with a putative prosequence in inclusion bodies, solubilized in the presence of 8 M urea, and refolded and converted to an active molecule. However, unlike bacterial subtilisins, in which the prosequence was removed from the catalytic domain by autoprocessing upon refolding, T. kodakaraensis subtilisin was refolded in a form with a putative prosequence. This refolded protein of recombinant T. kodakaraensis subtilisin which is composed of 398 amino acid residues (Gly(-82) to Gly(316)), was purified to give a single band on a sodium dodecyl sulfate (SDS)-polyacrylamide gel and characterized for biochemical and enzymatic properties. The good agreement of the molecular weights estimated by SDS-polyacrylamide gel electrophoresis (44,000) and gel filtration (40,000) suggests that T. kodakaraensis subtilisin exists in a monomeric form. T. kodakaraensis subtilisin hydrolyzed the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide only in the presence of the Ca(2+) ion with an optimal pH and temperature of pH 9.5 and 80 degrees C. Like bacterial subtilisins, it showed a broad substrate specificity, with a preference for aromatic or large nonpolar P1 substrate residues. However, it was much more stable than bacterial subtilisins against heat inactivation and lost activity with half-lives of >60 min at 80 degrees C, 20 min at 90 degrees C, and 7 min at 100 degrees C.  相似文献   

7.
L-Gulono-gamma-lactone oxidase, one of the microsomal flavin enzymes, catalyzes the last step of L-ascorbic acid biosynthesis in many animals; however, it is missing in scurvy-prone animals such as humans, primates, and guinea pigs. A cDNA clone for this enzyme was isolated by screening a rat liver cDNA expression library in lambda gt11 using antibody directed against the enzyme. The cDNA clone contained 2120 nucleotides and an open reading frame of 1320 nucleotides encoding 440 amino acids of the protein with a molecular weight of 50,605. The amino-terminal sequence (residues 1-33) of the enzyme isolated from rat liver completely coincided with the corresponding part of the deduced amino acid sequence. The identity of the cDNA clone was further confirmed by the agreement of the composition of the deduced amino acids with that determined by amino acid analysis of the enzyme. Hydropathy analysis of the deduced amino acid sequence revealed several hydrophobic regions, suggesting that they anchor the protein into the microsomal membrane. The deduced amino acid sequence showed no obvious homology with the flavin-binding regions of other eight flavoenzymes.  相似文献   

8.
Monoacylglycerol lipases (MGLs) catalyse the hydrolysis of monoacylglycerol into free fatty acid and glycerol. MGLs have been identified throughout all genera of life and have adopted different substrate specificities depending on their physiological role. In humans, MGL plays an integral part in lipid metabolism affecting energy homeostasis, signalling processes and cancer cell progression. In bacteria, MGLs degrade short-chain monoacylglycerols which are otherwise toxic to the organism. We report the crystal structures of MGL from the bacterium Bacillus sp. H257 (bMGL) in its free form at 1.2 Å and in complex with phenylmethylsulfonyl fluoride at 1.8 Å resolution. In both structures, bMGL adopts an α/β hydrolase fold with a cap in an open conformation. Access to the active site residues, which were unambiguously identified from the protein structure, is facilitated by two different channels. The larger channel constitutes the highly hydrophobic substrate binding pocket with enough room to accommodate monoacylglycerol. The other channel is rather small and resembles the proposed glycerol exit hole in human MGL. Molecular dynamics simulation of bMGL yielded open and closed states of the entrance channel and the glycerol exit hole. Despite differences in the number of residues, secondary structure elements, and low sequence identity in the cap region, this first structure of a bacterial MGL reveals striking structural conservation of the overall cap architecture in comparison with human MGL. Thus it provides insight into the structural conservation of the cap amongst MGLs throughout evolution and provides a framework for rationalising substrate specificities in each organism.  相似文献   

9.
Models of closed and open channel pores of a muscle-type nicotinic acetylcholine receptor (nAChR) channel comprising M1 and M2 segments are presented. A model of the closed channel is proposed in which hydrophobic residues of the Equatorial Leucine ring screen the oxygen domain formed by the Serine ring, thereby preventing ion flux without completely occluding the pore. This model demonstrates a high similarity with the structure derived from a recent electron microscopy study. We propose that hydrophobic residues of the Equatorial Leucine ring are retracted when the pore is open. Our models provide a possible resolution of the nAChR gate controversy. We have also obtained explanations for the complex mechanisms underlying inhibition of nAChR by philanthotoxins (PhTXs). PhTX-343, containing a spermine moiety with a charge of +3, binds deep in the pore near the Serine ring where classical open channel blockers of nAChR bind. In contrast, PhTX-(12), which has a single charged amino group is unable to reach deeply located rings because of steric restrictions. Both philanthotoxins may bind to a hydrophobic site located close to the external entrance of the pore in a region that includes residues associated with the regulation of desensitization.  相似文献   

10.
Chloride transport by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is inhibited by a broad range of organic anions that enter the channel pore from its cytoplasmic end, physically occluding the Cl- permeation pathway. These open channel blocker molecules are presumed to bind within a relatively wide pore inner vestibule that shows little discrimination between different large anions. The present study uses patch clamp recording to identify a pore-lining lysine residue, Lys-95, that acts to attract large blocker molecules into this inner vestibule. Mutations that remove the fixed positive charge associated with this amino acid residue dramatically weaken the blocking effects of five structurally unrelated open channel blockers (glibenclamide, 4,4'-dinitrostilbene-2,2'-disulfonic acid, lonidamine, 5-nitro-2-(3-phenylpropylamino)benzoic acid, and taurolithocholate-3-sulfate) when applied to the cytoplasmic face of the membrane. Mutagenesis of Lys-95 also induced amino acid side chain charge-dependent rectification of the macroscopic current-voltage relationship, consistent with the fixed positive charge on this residue normally acting to attract Cl- ions from the intracellular solution into the pore. These results identify Lys-95 as playing an important role in attracting permeant anions into the channel pore inner vestibule, probably by an electrostatic mechanism. This same electrostatic attraction mechanism also acts to attract larger anionic molecules into the relatively wide inner vestibule, where these substances bind to block Cl- permeation. Thus, structurally diverse open channel blockers of CFTR appear to share a common molecular mechanism of action that involves interaction with a positively charged amino acid side chain located in the inner vestibule of the pore.  相似文献   

11.
P450BM-3 is an extensively studied P450 cytochrome that is naturally fused to a cytochrome P450 reductase domain. Crystal structures of the heme domain of this enzyme have previously generated many insights into features of P450 structure, substrate binding specificity, and conformational changes that occur on substrate binding. Although many P450s are inhibited by imidazole, this compound does not effectively inhibit P450BM-3. Omega-imidazolyl fatty acids have previously been found to be weak inhibitors of the enzyme and show some unusual cooperativity with the substrate lauric acid. We set out to improve the properties of these inhibitors by attaching the omega-imidazolyl fatty acid to the nitrogen of an amino acid group, a tactic that we used previously to increase the potency of substrates. The resulting inhibitors were significantly more potent than their parent compounds lacking the amino acid group. A crystal structure of one of the new inhibitors bound to the heme domain of P450BM-3 reveals that the mode of interaction of the amino acid group with the enzyme is different from that previously observed for acyl amino acid substrates. Further, required movements of residues in the active site to accommodate the imidazole group provide an explanation for the low affinity of imidazole itself. Finally, the previously observed cooperativity with lauric acid is explained by a surprisingly open substrate-access channel lined with hydrophobic residues that could potentially accommodate lauric acid in addition to the inhibitor itself.  相似文献   

12.
Branched-chain amino acid aminotransferase (BCAT), which has pyridoxal 5'-phosphate as a cofactor, is a key enzyme in the biosynthetic pathway of hydrophobic amino acids (leucine, isoleucine, and valine). The enzyme reversibly catalyzes the transfer of the amino group of a hydrophobic amino acid to 2-oxoglutarate to form a 2-oxo acid and glutamate. Therefore, the active site of BCAT should have a mechanism to enable recognition of an acidic amino acid as well as a hydrophobic amino acid (double substrate recognition). The three-dimensional structures of Escherichia coli BCAT (eBCAT) in complex with the acidic substrate (glutamate) and the acidic substrate analogue (glutarate) have been determined by X-ray diffraction at 1.82 and 2.15 A resolution, respectively. The enzyme is a homo hexamer, with the polypeptide chain of the subunit folded into small and large domains, and an interdomain loop. The eBCAT in complex with the natural substrate, glutamate, was assigned as a ketimine as the most probable form based upon absorption spectra of the crystal complex and the shape of the residual electron density corresponding to the cofactor-glutamate bond structure. Upon binding of an acidic substrate, the interdomain loop approaches the substrate to shield it from the solvent region, as observed in the complex with a hydrophobic substrate. Both the acidic and the hydrophobic side chains of the substrates are bound to almost the same position in the pocket of the enzyme and are identical in structure. The inner side of the pocket is mostly hydrophobic to accommodate the hydrophobic side chain but has four sites to coordinate with the gamma-carboxylate of glutamate. The mechanism for the double substrate recognition observed in eBCAT is in contrast to those in aromatic amino acid and histidinol-phosphate aminotransferases. In an aromatic amino acid aminotransferase, the acidic side chain is located at the same position as that for the aromatic side chain because of large-scale rearrangements of the hydrogen bond network. In the histidinol-phosphate aminotransferase, the acidic and basic side chains are located at different sites and interact with different residues of the disordered loop.  相似文献   

13.
Human ether-à-go-go–related gene (hERG) channels mediate cardiac repolarization and bind drugs that can cause acquired long QT syndrome and life-threatening arrhythmias. Drugs bind in the vestibule formed by the S6 transmembrane domain, which also contains the activation gate that traps drugs in the vestibule and contributes to their efficacy of block. Although drug-binding residues have been identified, we know little about the roles of specific S6 residues in gating. We introduced cysteine mutations into the hERG channel S6 domain and measured mutational effects on the steady-state distribution and kinetics of transitions between the closed and open states. Energy-minimized molecular models based on the crystal structures of rKv1.2 (open state) and MlotiK1 and KcsA (closed state) provided structural contexts for evaluating mutant residues. The majority of mutations slowed deactivation, shifted conductance voltage curves to more negative potentials, or conferred a constitutive conductance over voltages that normally cause the channel to close. At the most intracellular extreme of the S6 region, Q664, Y667, and S668 were especially sensitive and together formed a ringed domain that occludes the pore in the closed state model. In contrast, mutation of S660, more than a full helical turn away and corresponding by alignment to a critical Shaker gate residue (V478), had little effect on gating. Multiple substitutions of chemically distinct amino acids at the adjacent V659 suggested that, upon closing, the native V659 side chain moves into a hydrophobic pocket but likely does not form the occluding gate itself. Overall, the study indicated that S6 mutagenesis disrupts the energetics primarily of channel closing and identified several residues critical for this process in the native channel.  相似文献   

14.
15.
J Bouvier  P Schneider  R Etges  C Bordier 《Biochemistry》1990,29(43):10113-10119
The promastigote surface protease (PSP) of Leishmania is a neutral membrane-bound zinc enzyme. The protease has no exopeptidase activity and does not cleave a large selection of substrates with chromogenic and fluorogenic leaving groups at the P1' site. The substrate specificity of the enzyme was studied by using natural and synthetic peptides of known amino acid sequence. The identification of 11 cleavage sites indicates that the enzyme preferentially cleaves peptides at the amino side when hydrophobic residues are in the P1' site and basic amino acid residues in the P2' and P3' sites. In addition, tyrosine residues are commonly found at the P1 site. Hydrolysis is not, however, restricted to these residues. These results have allowed the synthesis of a model peptide, H2N-L-I-A-Y-L-K-K-A-T-COOH, which is cleaved by PSP between the tyrosine and leucine residues with a kcat/Km ratio of 1.8 X 10(6) M-1 s-1. Furthermore, a synthetic nonapeptide overlapping the last four amino acids of the prosequence and the first five residues of mature PSP was found to be cleaved by the protease at the expected site to release the mature enzyme. This result suggests a possible autocatalytic mechanism for the activation of the protease. Finally, the hydroxamate-derivatized dipeptide Cbz-Tyr-Leu-NHOH was shown to inhibit PSP competitively with a KI of 17 microM.  相似文献   

16.
Recent crystal structures of the CorA Mg(2+) transport protein from Thermotoga maritima (TmCorA) revealed an unusually long ion pore putatively gated by hydrophobic residues near the intracellular end and by universally conserved asparagine residues at the periplasmic entrance. A conformational change observed in an isolated funnel domain structure also led to a proposal for the structural basis of gating. Because understanding the molecular mechanisms underlying ion channel and transporter gating remains an important challenge, we have undertaken a structure-guided engineering approach to probe structure-function relationships in TmCorA. The intracellular funnel domain is shown to constitute an allosteric regulatory module that can be engineered to promote an activated or closed state. A periplasmic gate centered about a proline-induced kink of the pore-lining helix is described where "helix-straightening" mutations produce a dramatic gain-of-function. Mutation to the narrowest constriction along the pore demonstrates that a hydrophobic gate is operational within this Mg(2+)-selective transport protein and likely forms an energetic barrier to ion flux. We also provide evidence that highly conserved acidic residues found in the short periplasmic loop are not essential for TmCorA function or Mg(2+) selectivity but may be required for proper protein folding and stability. This work extends our gating model for the CorA-Alr1-Mrs2 superfamily and reveals features that are characteristic of an ion channel. Aspects of these results that have broader implications for a range of channel and transporter families are highlighted.  相似文献   

17.
GO (galactose oxidase; E.C. 1.1.3.9) is a monomeric 68 kDa enzyme that contains a single copper ion and an amino acid-derived cofactor. The enzyme is produced by the filamentous fungus Fusarium graminearum as an extracellular enzyme. The enzyme has been extensively studied by structural, spectroscopic, kinetic and mutational approaches that have provided insight into the catalytic mechanism of this radical enzyme. One of the most intriguing features of the enzyme is the post-translational generation of an organic cofactor from active-site amino acid residues. Biogenesis of this cofactor involves the autocatalytic formation of a thioether bond between Cys-228 and Tyr-272, the latter being one of the copper ligands. Formation of this active-site feature is closely linked to the loss of an N-terminal 17 amino acid prosequence. When copper and oxygen are added to this pro-form of GO (pro GO), purified in copper-free conditions from the heterologous host Aspergillus nidulans, mature GO is formed by an autocatalytic process. Structural comparison of pro GO with mature GO reveals overall structural similarity, but with some regions showing significant local differences in main-chain position. Some side chains of the active-site residues differ significantly from their positions in the mature enzyme. These structural effects of the prosequence suggest that it may act as an intramolecular chaperone to provide an open active-site structure conducive to copper binding and chemistry associated with cofactor formation. The prosequence is not mandatory for processing, as a recombinant form of GO lacking this region and purified under copper-free conditions can also be processed in an autocatalytic copper- and oxygen-dependent manner.  相似文献   

18.
Li M  Binda C  Mattevi A  Edmondson DE 《Biochemistry》2006,45(15):4775-4784
Current structural results of several flavin-dependent amine oxidizing enzymes including human monoamine oxidases A and B (MAO A and MAO B) show aromatic amino acid residues oriented approximately perpendicular to the flavin ring, suggesting a functional role in catalysis. In the case of human MAO B, two tyrosyl residues (Y398 and Y435) are found in the substrate binding site on the re face of the covalent flavin ring [Binda et al. (2002) J. Biol. Chem. 277, 23973-23976]. To probe the functional significance of this structure, Tyr435 in MAO B was mutated with the amino acids Phe, His, Leu, or Trp, the mutant proteins expressed in Pichia pastoris, and purified to homogeneity. Each mutant protein contains covalent FAD and exhibits a high level of catalytic functionality. No major alterations in active site structures are detected on comparison of their respective crystal structures with that of WT enzyme. The relative k(cat)/K(m) values for each mutant enzyme show Y435 > Y435F = Y435L = Y435H > Y435W. A similar behavior is also observed with the membrane-bound forms of MAO A and MAO B (MAO A Y444 mutant enzymes are found to be unstable on membrane extraction). p-Nitrobenzylamine is found to be a poor substrate while p-nitrophenethylamine is found to be a good substrate for all WT and mutant forms of MAO B. Analysis of these kinetic and structural data suggests the function of the "aromatic cage" in MAO to include a steric role in substrate binding and access to the flavin coenzyme and to increase the nucleophilicity of the substrate amine moiety. These results are consistent with a proposed polar nucleophilic mechanism for catalytic amine oxidation.  相似文献   

19.
Polyethylene glycol dehydrogenase (PEGDH) from Sphingopyxis terrae (formerly Sphingomonas terrae) is composed of 535 amino acid residues and one flavin adenine dinucleotide per monomer protein in a homodimeric structure. Its amino acid sequence shows 28.5 to 30.5% identity with glucose oxidases from Aspergillus niger and Penicillium amagasakiense. The ADP-binding site and the signature 1 and 2 consensus sequences of glucose-methanol-choline oxidoreductases are present in PEGDH. Based on three-dimensional molecular modeling and kinetic characterization of wild-type PEGDH and mutant PEGDHs constructed by site-directed mutagenesis, residues potentially involved in catalysis and substrate binding were found in the vicinity of the flavin ring. The catalytically important active sites were assigned to His-467 and Asn-511. One disulfide bridge between Cys-379 and Cys-382 existed in PEGDH and seemed to play roles in both substrate binding and electron mediation. The Cys-297 mutant showed decreased activity, suggesting the residue's importance in both substrate binding and electron mediation, as well as Cys-379 and Cys-382. PEGDH also contains a motif of a ubiquinone-binding site, and coenzyme Q10 was utilized as an electron acceptor. Thus, we propose several important amino acid residues involved in the electron transfer pathway from the substrate to ubiquinone.  相似文献   

20.
The paucity of crystallographic data on the structure of intrinsic membrane proteins necessitates the development of additional techniques to probe their structures. The colicin E1 ion channel domain contains one prominent hydrophobic region near its COOH terminus that has been proposed to be an anchor for the assembly of the channel. Saturation site-directed mutagenesis of the hydrophobic anchor region of the colicin E1 ion channel was used to probe whether it spanned the bilayer once or twice. A nonpolar amino acid was replaced by a charged residue in 29 mutations made at 26 positions in the channel domain. Substitution of the charged amino acid at all positions except those in the center of the hydrophobic region and the periphery of the hydrophobic region caused a large decrease in the cytotoxicity of the purified mutant colicin E1 protein. This result implies that the hydrophobic domain spans the membrane bilayer twice in a helical hairpin loop, with the center of this domain residing in an aqueous or polar phase. The lengths of the trans-membrane helices appear to be approximately 18 and 16 residues. The absence of significant changes in ion selectivity in five of nine mutants indicated that these mutations did not cause a large change in the channel structure. The ion selectivity changes in four mutants and those previously documented for the flanking Lys residues imply that the hydrophobic hairpin is part of the channel lumen. Water may "abhor" the hydrophobic side of the channel, explaining the small effects of residue charge changes on ion selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号