首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F Payre  A Vincent 《FEBS letters》1988,234(2):245-250
Finger proteins, the first example of which was Xenopus TFIIIA, share Zn2+ finger-like folded domains capable of binding to nucleic acids. A large number of this type of protein have been characterised from diverse organisms, indicating a wide evolutionary spread of the DNA-binding fingers. At least two classes of finger proteins may be distinguished. Class I proteins contain variable numbers of the tandemly repeating TFIIIA-like finger motif, (Y/F-X-C-X2-4-C-X3-F-X5-L-X2-H-X3-H). Class II finger proteins display a single (C-X2-C-X13-C-X2-C) motif and a facultative second putative finger. The relation between the structure of finger proteins and their recognised DNA sequences is discussed.  相似文献   

2.
Phylogenetic patterns and the underlying speciation processes can be deduced from morphological, functional, and ecological patterns of species similarity and divergence. In some cases, though, species retain multiple similarities and remain almost indistinguishable; in other cases, evolutionary convergence can make such patterns misleading; very often in such cases, the “true” picture only emerges from carefully built molecular phylogenies, which may come with major surprises. In addition, closely related species may experience gene flow after divergence, thus potentially blurring species delimitation. By means of advanced inferential methods, we studied molecular divergence between species of the Virola genus (Myristicaceae): widespread Virola michelii and recently described, endemic V. kwatae, using widespread V. surinamensis as a more distantly related outgroup with different ecology and morphology—although with overlapping range. Contrary to expectations, we found that the latter, and not V. michelii, was sister to V. kwatae. Therefore, V. kwatae probably diverged from V. surinamensis through a recent morphological and ecological shift, which brought it close to distantly related V. michelii. Through the modeling of the divergence process, we inferred that gene flow between V. surinamensis and Vkwatae stopped soon after their divergence and resumed later, in a classical secondary contact event which did not erase their ecological and morphological differences. While we cannot exclude that initial divergence occurred in allopatry, current species distribution and the absence of geographical barriers make complete isolation during speciation unlikely. We tentatively conclude that (a) it is possible that divergence occurred in allopatry/parapatry and (b) secondary contact did not suppress divergence.  相似文献   

3.
Evolutionary divergence of AP-PCR (RAPD) patterns   总被引:3,自引:0,他引:3  
Rates at which AP-PCR patterns diverge among isolated taxa were examined to test whether they exhibit clocklike regularity. The results showed that rates of divergence differed significantly among the groups examined (primates, antelopes, and Hawaiian Drosophila grimshawi). Therefore, AP-PCR divergence rates cannot be used as a "universal clock" with an invariant rate in all animals. Nevertheless, within each group, a strong relationship existed between degree of AP-PCR pattern divergence and time since separation of isolated taxa. Thus, AP-PCR divergence may prove useful for dating evolutionary events if calibrated within a more limited taxon.   相似文献   

4.
5.
6.
Organisms living in the Southern Ocean are exposed to strong environmental constraints, especially temperature. The Perciform suborder Notothenioidei, today largely endemic to the Antarctic, has developed numerous cold-adapted characters. The most striking peculiarity of this group of fish is the drastic reduction of hemoglobin content in their blood. This condition gives rise to a low metabolic demand of iron. Recently, we have undertaken a study to add new insights on iron metabolism in hemoglobinless fish. By taking advantage to our previous studies on transferrins from Antarctic Notothenioids, in this article we compared the evolutionary properties of these sequences to those from other fish groups and mammals. Our findings based on analysis of dN/dS ratio and on the results of the relative rate ratio test suggest that the transferrin gene has undergone positive selection in fish but not in mammals. The results of type I functional divergence provide statistical evidence for shifted evolutionary rate after speciation. Finally, when superimposed onto the three-dimensional structure of transferrin, the sites identified as responsible of the divergence in Notothenioids appear to cluster preferentially at non-iron binding locations, occupying surface locations that might affect the rate of iron binding and/or release in a cold environment.  相似文献   

7.
Zn-dependent carboxypeptidases (ZnCP) cleave off the C-terminal amino acid residues from proteins and peptides. Here we describe a superfamily that unites classical ZnCP with other enzymes, most of which are known (or likely) to participate in metal-dependent peptide bond cleavage, but not necessarily in polypeptide substrates. It is demonstrated that aspartoacylase (ASP gene) and succinylglutamate desuccinylase (ASTE gene) are members of the ZnCP family. The Zn-binding site along with the structural core of the protein is shown to be conserved between ZnCP and another large family of hydrolases that includes mostly aminopeptidases (ZnAP). Both families (ZnCP and ZnAP) include not only proteases but also enzymes that perform N-deacylation, and enzymes that catalyze N-desuccinylation of amino acids. This is a result of functional convergence that apparently occurred after the divergence of the two families.  相似文献   

8.
As shown from several long‐term and time‐intensive studies, closely related, sympatric species can impose strong selection on one another, leading to dramatic examples of phenotypic evolution. Here, we use occurrence data to identify clusters of sympatric Sceloporus lizard species and to test whether Sceloporus species tend to coexist with other species that differ in body size, as we would expect when there is competition between sympatric congeners. We found that Sceloporus species can be grouped into 16 unique bioregions. Bioregions that are located at higher latitudes tend to be larger and have fewer species, following Rapoport''s rule and the latitudinal diversity gradient. Species richness was positively correlated with the number of biomes and elevation heterogeneity of each bioregion. Additionally, most bioregions show signs of phylogenetic underdispersion, meaning closely related species tend to occur in close geographic proximity. Finally, we found that although Sceloporus species that are similar in body size tend to cluster geographically, small‐bodied Sceloporus species are more often in sympatry with larger‐bodied Sceloporus species than expected by chance alone, whereas large‐bodied species cluster with each other geographically and phylogenetically. These results suggest that community composition in extant Sceloporus species is the result of allopatric evolution, as closely related species move into different biomes, and interspecies interactions, with sympatry between species of different body sizes. Our phyloinformatic approach offers unique and detailed insights into how a clade composed of ecologically and morphologically disparate species are distributed over large geographic space and evolutionary time.  相似文献   

9.
The Solute Carriers (SLCs) are membrane proteins that regulate transport of many types of substances over the cell membrane. The SLCs are found in at least 46 gene families in the human genome. Here, we performed the first evolutionary analysis of the entire SLC family based on whole genome sequences. We systematically mined and analyzed the genomes of 17 species to identify SLC genes. In all, we identified 4,813 SLC sequences in these genomes, and we delineated the evolutionary history of each of the subgroups. Moreover, we also identified ten new human sequences not previously classified as SLCs, which most likely belong to the SLC family. We found that 43 of the 46 SLC families found in Homo sapiens were also found in Caenorhabditis elegans, whereas 42 of them were also found in insects. Mammals have a higher number of SLC genes in most families, perhaps reflecting important roles for these in central nervous system functions. This study provides a systematic analysis of the evolutionary history of the SLC families in Eukaryotes showing that the SLC superfamily is ancient with multiple branches that were present before early divergence of Bilateria. The results provide foundation for overall classification of SLC genes and are valuable for annotation and prediction of substrates for the many SLCs that have not been tested in experimental transport assays.  相似文献   

10.
The higher proportion of repeated DNA sequences in the garden pea (Pisum sativum) than in the mung bean (Vigna radiata), as well as other differences between these legume genomes, are consistent with a higher rate of sequence amplification in the former. This hypothesis leads to a prediction that repeated sequence families inPisum are mostly heterogeneous, as defined by Bendich and Anderson (1977), whileVigna families are homogeneous. An assay developed by these authors to distinguish between the two types of families, by comparison of reassociation rates at different temperatures, was utilized. The results forVigna defied the predictions of the assay for either homogeneous or hetereogeneous model. Evaluation of the kinetic data in light of the great diversity of repeated family copy numbers in both genomes enabled an interpretation of the results as consistent with hetereogenous families inPisum and homogeneous families inVigna. These tentative conclusions were supported by the results of a thermal denaturation (melting) assay described in the accompanying paper.Abbreviations used Cot the product of molar concentration of DNA nucleotides and time of incubation (mol s/L) - ECot equivalent - Cot the value after correction to standard reassociation conditions (120 mM sodium phosphate buffer, 60°C) - (Et)4NCl tetraethylammonium chloride - Tm the temperature at which half of the nucleotides in solution are unpaired This paper is Carnegie Institution of Washington Department of Plant Biology Publication No. 708 and is based on a portion of a dissertation submitted by R.S.P. in partial fulfillment of the Ph.D. requirements at Stanford University  相似文献   

11.
Natural history and functional divergence of protein tyrosine kinases   总被引:3,自引:0,他引:3  
Gu J  Gu X 《Gene》2003,317(1-2):49-57
Cellular signaling is important for many biological processes including growth, differentiation, adhesion, motility and apoptosis. The protein tyrosine kinase (PTK) supergene family is the key mediator in cellular signaling in metazoans, directly associated with a variety of human diseases. All PTKs contain a highly conserved catalytic kinase domain, in spite of variable multi-domain structures. Within each PTK gene family, members exhibit functional divergence in substrate-specificity or temporal/tissue-specific expression, although their primary function is conserved. After conducting phylogenetic analysis on major PTK gene families, we found that the expanding of each PTK family was likely caused by gene or genome duplication event(s) that occurred before the emergence of teleosts but after the vertebrate-amphioxus split. We further investigated the evolutionary pattern of functional divergence after gene duplication in those gene families. Our results show that site-specific shifted evolutionary rate (altered functional constraint) is a common pattern in PTK gene family evolution.  相似文献   

12.
Sokolova IM  Sokolov EP 《FEBS letters》2005,579(2):313-317
Current hypothesis about the evolution of uncoupling proteins (UCPs) proposed by suggests that UCP4 is the earliest form of UCP ancestral to all other UCP orthologues. However, this hypothesis is difficult to reconcile with a narrow tissue distribution of UCP4 (which is a brain-specific isoform), suggesting highly specialized rather than anfcestral function for this protein. We searched for UCP2, UCP3, and UCP5 homologues in invertebrate genomes using amplification with degenerate primers designed against UCP2-specific conserved sequences and/or BLASTP search with stringent ad hoc criteria to distinguish between homologues and orthologues of different UCPs. Our study identified invertebrate UCP homologues similar to UCP2 and 3 (which we termed UCP6) and an invertebrate homologue of UCP5. Phylogenetic analysis indicates that there are at least three clades of UCPs in invertebrates, which are closely related to vertebrate UCP1-3, UCP4, and UCP5, respectively, and shows early evolutionary divergence of UCPs, which pre-dates the divergence of protostomes and deuterostomes. It also suggests that the newly identified UCP6 proteins from invertebrates are ancestral to the vertebrate UCP1, UCP2, and UCP3, and that divergence of these three vertebrate orthologues occurred late in evolution of the vertebrates. This study refutes the hypothesis of Hanak and Jezek (2001) that UCP4 is an ancestral form for all UCPs, and shows early evolutionary diversification of this protein family, which corresponds to their proposed functional diversity in regulation of proton leak, antioxidant defense and apoptosis.  相似文献   

13.
14.
15.
Due to their worldwide distribution and occupancy of different types of environments, bottlenose dolphins display considerable morphological variation. Despite limited understanding about the taxonomic identity of such forms and connectivity among them at global scale, coastal (or inshore) and offshore (or oceanic) ecotypes have been widely recognized in several ocean regions. In the Southwest Atlantic Ocean (SWA), however, there are scarce records of bottlenose dolphins differing in external morphology according to habitat preferences that resemble the coastal‐offshore pattern observed elsewhere. The main aim of this study was to analyze the genetic variability, and test for population structure between coastal (n = 127) and offshore (n = 45) bottlenose dolphins sampled in the SWA to assess whether their external morphological distinction is consistent with genetic differentiation. We used a combination of mtDNA control region sequences and microsatellite genotypes to infer population structure and levels of genetic diversity. Our results from both molecular marker types were congruent and revealed strong levels of structuring (microsatellites FST = 0.385, p < .001; mtDNA FST =  0.183, p < .001; ΦST = 0.385, p < .001) and much lower genetic diversity in the coastal than the offshore ecotype, supporting patterns found in previous studies elsewhere. Despite the opportunity for gene flow in potential “contact zones”, we found minimal current and historical connectivity between ecotypes, suggesting they are following discrete evolutionary trajectories. Based on our molecular findings, which seem to be consistent with morphological differentiations recently described for bottlenose dolphins in our study area, we recommend recognizing the offshore bottlenose dolphin ecotype as an additional Evolutionarily Significant Unit (ESU) in the SWA. Implications of these results for the conservation of bottlenose dolphins in SWA are also discussed.  相似文献   

16.
Two glycoside hydrolase (GH) families were analyzed to detect the presence of functional divergence using the program DIVERGE. These two families, GH7 and GH16, each contain members related by amino acid sequence similarity, retaining hydrolytic mechanisms, and catalytic residue identity. GH7 and GH16 comprise GH Clan B, with a shared β‐jelly roll topology and mechanism. GH7 contains fungal cellobiohydrolases and endoglucanases and is divided into five main subfamilies, four of the former and one of the latter. Cluster comparisons between three of the cellobiohydrolase subfamilies and the endoglucanase subfamily identified specific amino acid residues that play a role in the functional divergence between the two enzyme types. GH16 contains subfamilies of bacterial agarases, xyloglucosyl transferases, 1,3‐β‐D ‐glucanases, lichenases, and other enzymes with various substrate specificities and product profiles. Four cluster comparisons between these four main subfamilies again have identified amino acid residues involved in functional divergence between the subfamilies. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 478–495, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.
Current use of terms to describe evolutionary patterns is vague and inconsistent. In this paper, logical definitions of terms that describe specific evolutionary patterns are proposed. Evolutionary inertia is defined in a manner analogous to inertia in physics. A character in a static state of evolutionary inertia represents evolutionary stasis while a character showing consistent directional evolutionary change represents evolutionary thrust. I argue that evolutionary stasis should serve as the null hypothesis in all character evolution studies. Deviations from this null model consistent with alternative hypotheses (e.g. random drift, adaptation) can then give us insight into evolutionary processes. Failure to reject a null hypothesis of evolutionary stasis should not be used as a serious explanation of data. The term evolutionary constraint is appropriate only when a selective advantage for a character state transition is established but this transition is prevented by specific, identified factors. One type of evolutionary constraint discussed is evolutionary momentum. A final pattern of evolutionary change discussed is closely related to evolutionary thrust and is referred to as evolutionary acceleration. I provide examples of how this set of definitions can improve our ability to communicate interpretations of evolutionary patterns.  相似文献   

18.
19.
20.
Zhang L  Ma H 《The New phytologist》2012,195(1):248-263
? Plants and animals possess very different developmental processes, yet share conserved epigenetic regulatory mechanisms, such as histone modifications. One of the most important forms of histone modification is methylation on lysine residues of the tails, carried out by members of the SET protein family, which are widespread in eukaryotes. ? We analyzed molecular evolution by comparative genomics and phylogenetics of the SET genes from plant and animal genomes, grouping SET genes into several subfamilies and uncovering numerous gene duplications, particularly in the Suv, Ash, Trx and E(z) subfamilies. ? Domain organizations differ between different subfamilies and between plant and animal SET proteins in some subfamilies, and support the grouping of SET genes into seven main subfamilies, suggesting that SET proteins have acquired distinctive regulatory interactions during evolution. We detected evidence for independent evolution of domain organization in different lineages, including recruitment of new domains following some duplications. ? More recent duplications in both vertebrates and land plants are probably the result of whole-genome or segmental duplications. The evolution of the SET gene family shows that gene duplications caused by segmental duplications and other mechanisms have probably contributed to the complexity of epigenetic regulation, providing insights into the evolution of the regulation of chromatin structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号