首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
n-3 Polyunsaturated fatty acids (PUFA) are increasingly consumed as food additives and supplements; however, the side effects of these fatty acids, especially at high doses, remain unclear. We previously discovered a high fat n-3 PUFA diet made of fish/flaxseed oils promoted significant weight gain in C57BL/6 mice, relative to a control, without changes in food consumption. Therefore, here we tested the effects of feeding mice high fat (HF) and low fat (LF) n-3 PUFA diets, relative to a purified control diet (CD), on locomotor activity using metabolic cages. Relative to CD, the HF n-3 PUFA diet, but not the LF n-3 PUFA diet, dramatically reduced ambulatory, rearing, and running wheel activities. Furthermore, the HF n-3 PUFA diet lowered the respiratory exchange ratio. The data suggest mixed fish/flaxseed oil diets at high doses could exert some negative side effects and likely have limited therapeutic applications.  相似文献   

2.
Zinc (Zn) has been implicated in altered adipose metabolism, insulin resistance and obesity. The objective of this study was to investigate the effects dietary Zn deficiency and supplementation on adiposity, serum leptin and fatty acid composition of adipose triglycerides and phospholipid in C57BL/6J mice fed low-fat (LF) or high-fat (HF) diets for a 16 week period. Weanling C57BL/6J mice were fed LF (16% kcal from soybean oil) or HF (39% kcal from lard and 16% kcal from soybean oil) diets containing 3, 30 or 150 mg Zn/kg diet (ZD = Zn-deficient, ZC = Zn control and ZS = Zn-supplemented, respectively). HF-fed mice had higher fat pad weights and lower adipose Zn concentrations than the LF-fed mice. The ZD and ZS groups had a reduced content of fatty acids in adipose triglycerides compared to the ZC group, suggesting that zinc status may influence fatty acid accumulation in adipose tissue. Serum leptin concentration was positively correlated with body weight and body fat, and negatively correlated with adipose Zn concentration. Dietary fat, but not dietary Zn, altered the fatty acid composition of adipose tissue phospholipid and triglyceride despite differences in Zn status assessed by femur Zn concentrations. The fatty acid profile of adipose triglycerides generally reflected the diets. HF-fed mice had a higher percentage of C20:4 n-6, elevated ratio of n-6/n-3, lower ratio of PUFA/SAT and reduced percentage of total n-3 fatty acids in adipose phospholipid, a fatty acid profile associated with obesity-induced risks for insulin resistance and impaired glucose transport. In summary, the reduced adipose Zn concentrations in HF-fed mice and the negative correlation between serum leptin and adipose Zn concentrations support an interrelationship among obesity, leptin and Zn metabolism.  相似文献   

3.
α-Linolenic acid (ALA) is an essential fatty acid and the precursor for long-chain n-3 PUFA. However, biosynthesis of n-3 PUFA is limited in a Western diet likely due to an overabundance of n-6 PUFA. We hypothesized that dietary reduction of n-6/n-3 PUFA ratio is sufficient to promote the biosynthesis of long-chain n-3 PUFA, leading to an attenuation of high fat (HF) diet-induced obesity and inflammation. C57BL/6 J mice were fed a HF diet from ALA-enriched butter (n3Bu, n-6/n-3=1) in comparison with isocaloric HF diets from either conventional butter lacking both ALA and LA (Bu, n-6/n-3=6), or margarine containing a similar amount of ALA and abundant LA (Ma, n-6/n-3=6). Targeted lipidomic analyses revealed that n3Bu feeding promoted the bioconversion of long-chain n-3 PUFA and their oxygenated metabolites (oxylipins) derived from ALA and EPA. The n3Bu supplementation attenuated hepatic TG accumulation and adipose tissue inflammation, resulting in improved insulin sensitivity. Decreased inflammation by n3Bu feeding was attributed to the suppression of NF-κB activation and M1 macrophage polarization. Collectively, our work suggests that dietary reduction of the n-6/n-3 PUFA ratio, as well as total n-3 PUFA consumed, is a crucial determinant that facilitates n-3 PUFA biosynthesis and subsequent lipidomic modifications, thereby conferring metabolic benefits against obesity-induced inflammation and insulin resistance.  相似文献   

4.
A high-fat diet containing polyunsaturated fatty acids (PUFA: n-3 or n-6) given for 4 wk to 5-wk-old male Wistar rats induced a clear hyperglycemia (10.4 +/- 0.001 mmol/l for n-6 rats and 10.1 +/- 0.001 for n-3 rats) and hyperinsulinemia (6.6 +/- 0.8 ng/ml for n-6 rats and 6.4 +/- 1.3 for n-3 rats), signs of insulin resistance. In liver, both diets (n-3 and n-6) significantly reduced insulin receptor (IR) number, IR and IR substrate (IRS)-1 tyrosine phosphorylation, and phosphatidylinositol (PI) 3'-kinase activity. In contrast, in leg muscle, IR density, as determined by Western blotting, was not affected, whereas IR and IRS-1 tyrosine phosphorylation in response to insulin treatment was restored in animals fed with n-3 PUFA to normal; in n-6 PUFA, the phosphorylation was depressed, as evidenced by Western blot analysis using specific antibodies. In addition, PI 3'-kinase activity and GLUT-4 content in muscle were maintained at normal levels in rats fed with n-3 PUFA compared with rats fed a normal diet. In rats fed with n-6 PUFA, both PI 3'-kinase activity and GLUT-4 content were reduced. Furthermore, in adipose tissue and using RT-PCR, we show that both n-3 and n-6 PUFA led to slight or strong reductions in p85 expression, respectively, whereas GLUT-4 and leptin expression was depressed in n-6 rats. The expression was not affected in n-3 rats compared with control rats. In conclusion, a high-fat diet enriched in n-3 fatty acids maintained IR, IRS-1 tyrosine phosphorylation, and PI 3'-kinase activity and total GLUT-44 content in muscle but not in liver. A high-fat diet (n-3) partially altered the expression of p85 but not that of GLUT-4 and leptin mRNAs in adipose tissue.  相似文献   

5.
In one of the most extensive analyses to date we show that the balance of diet n-3 and n-6 polyunsaturated fatty acids (PUFA) is the most important determinant of membrane composition in the rat under 'normal' conditions. Young adult male Sprague-Dawley rats were fed one of twelve moderate-fat diets (25% of total energy) for 8weeks. Diets differed only in fatty acid (FA) profiles, with saturate (SFA) content ranging 8-88% of total FAs, monounsaturate (MUFA) 6-65%, total PUFA 4-81%, n-6 PUFA 3-70% and n-3 PUFA 1-70%. Diet PUFA included only essential FAs 18:2n-6 and 18:3n-3. Balance between n-3 and n-6 PUFA is defined as the PUFA balance (n-3 PUFA as % of total PUFA) and ranged 1-86% in the diets. FA composition was measured for brain, heart, liver, skeletal muscle, erythrocytes and plasma phospholipids, as well as adipose tissue and plasma triglycerides. The conformer-regulator model was used (slope=1 indicates membrane composition completely conforming to diet). Extensive changes in diet SFA, MUFA and PUFA had minimal effect on membranes (average slopes 0.01, 0.07, 0.07 respectively), but considerable influence on adipose tissue and plasma triglycerides (average slopes 0.27, 0.53, 0.47 respectively). Diet balance between n-3 and n-6 PUFA had a biphasic influence on membrane composition. When n-3 PUFA<10% of total PUFA, membrane composition completely conformed to diet (average slope 0.95), while diet PUFA balance>10% had little influence (average slope 0.19). The modern human diet has an average PUFA balance ~10% and this will likely have significant health implications.  相似文献   

6.
High saturated fatty acid (SFA) diets contribute to the development of insulin resistance, whereas fish oil-derived n-3 polyunsaturated fatty acids (PUFA) increase the secretion of adiponectin (Ad), an adipocyte-derived protein that stimulates fatty acid oxidation (FAO) and improves skeletal muscle insulin response. We sought to determine whether fish oil could prevent and/or restore high SFA diet-induced impairments in Ad and insulin response in soleus muscle. Sprague-Dawley rats were fed 1) a low-fat control diet (CON group), 2) high-SFA diet (SFA group), or 3) high SFA with n-3 PUFA diet (SFA/n-3 PUFA group). At 4 wk, CON and SFA/n-3 PUFA animals were terminated, and SFA animals were either terminated or fed SFA or SFA/n-3 PUFA for an additional 2 or 4 wk. The effect of diet on Ad-stimulated FAO, insulin-stimulated glucose transport, and expression of Ad, insulin and inflammatory signaling proteins was determined in the soleus muscle. Ad stimulated FAO in CON and 4 wk SFA/n-3 PUFA (+36%, +39%, respectively P ≤ 0.05) only. Insulin increased glucose transport in CON, 4 wk SFA/n-3 PUFA, and 4 wk SFA + 4 wk SFA/n-3 PUFA (+82%, +33%, +25%, respectively P ≤ 0.05); this effect was lost in all other groups. TLR4 expression was increased with 4 wk of SFA feeding (+24%, P ≤ 0.05), and this was prevented in 4 wk SFA/n-3 PUFA. Suppressor of cytokine signaling-3 expression was increased in SFA and SFA/n-3 PUFA (+33 and +18%, respectively, P ≤ 0.05). Our results demonstrate that fish oil can prevent high SFA diet-induced impairments in both Ad and insulin response in soleus muscle.  相似文献   

7.
n-3 polyunsaturated fatty acids (n-3 PUFA) might regulate metabolism by lowering endocannabinoid levels. We examined time-dependent changes in adipose tissue levels of endocannabinoids as well as in parameters of glucose homeostasis induced by n-3 PUFA in dietary-obese mice, and compared these results with the effect of n-3 PUFA intervention in type 2 diabetic (T2DM) subjects. Male C57BL/6J mice were fed for 8, 16 or 24?weeks a high-fat diet alone (cHF) or supplemented with n-3 PUFA (cHF?+?F). Overweight/obese, T2DM patients on metformin therapy were given for 24?weeks corn oil (Placebo; 5?g/day) or n-3 PUFA concentrate as above (Omega-3; 5?g/day). Endocannabinoids were measured by liquid chromatography-tandem mass-spectrometry. Compared to cHF-fed controls, the cHF?+?F mice consistently reduced 2-arachidonoylglycerol (up to ~2-fold at week 24) and anandamide (~2-fold) in adipose tissue, while the levels of endocannabinoid-related anti-inflammatory molecules N-eicosapentaenoyl ethanolamine (EPEA) and N-docosahexaenoyl ethanolamine (DHEA) increased more than ~10-fold and ~8-fold, respectively. At week 24, the cHF?+?F mice improved glucose tolerance and fasting blood glucose, the latter being positively correlated with adipose 2-arachidonoylglycerol levels only in obese cHF-fed controls, like fasting insulin and HOMA-IR. In the patients, n-3 PUFA failed to reduce 2-arachidonoylglycerol and anandamide levels in adipose tissue and serum, but they increased both adipose tissue and serum levels of EPEA and DHEA. In conclusion, the inability of n-3 PUFA to reduce adipose tissue and serum levels of classical endocannabinoids might contribute to a lack of beneficial effects of these lipids on glucose homeostasis in T2DM patients.  相似文献   

8.
We examined whether a low amount of dietary long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) modulated phosphatidylinositol 3'-kinase (PI 3-kinase) activity and downstream Akt phosphorylation differently in normal or insulin-resistant rats. Rats were fed for 28 days with either a control diet containing 14.6% of metabolizable energy (ME) as peanut-rape oil (PR) or an n-3 diet where 4.9% of ME as PR was replaced by fish oil. Over the last 5 days, rats received 9 per thousand NaCl or dexamethasone (1 mg/kg). Insulin stimulation of both PI 3-kinase activity and Akt serine(473) phosphorylation and modulation of GLUT4 content were studied in liver, muscle, and adipose tissue (AT). Glucose tolerance and insulin sensitivity were determined by an oral glucose challenge. In muscle and AT, LC n-3 PUFA abolished insulin-stimulated PI 3-kinase activity. These effects were not paralleled by defects in Akt serine(473) phosphorylation, which was even increased in AT. Dexamethasone abolished insulin-stimulated PI 3-kinase activity in all tissues, whereas Akt serine(473) phosphorylation was markedly reduced in muscle but unaltered in liver and AT. Such tissue-specific dissociating effects of LC n-3 PUFA on PI 3-kinase/Akt activation took place without alteration of glucose metabolism. Maintenance of a normal glucose metabolism by the n-3 diet despite abolition of PI 3-kinase activation was likely explained by a compensatory downstream Akt serine(473) phosphorylation. The inability of LC n-3 PUFA to prevent insulin resistance by dexamethasone could result from the lack of such a dissociation.  相似文献   

9.
This study investigated the effects of dietary linolenic acid (C18:3n-3) v. linoleic acid (C18:2n-6) on fatty acid composition and protein expression of key lipogenic enzymes, acetyl-CoA carboxylase (ACC), stearoyl-CoA desaturase (SCD) and delta 6 desaturase (Δ6d) in longissimus muscle and subcutaneous adipose tissue of bulls. Supplementation of the diet with C18:3n-3 was accompanied by an increased level of n-3 fatty acids in muscle which resulted in decrease of n-6/n-3 ratio. The diet enriched with n-3 polyunsaturated fatty acids (PUFAs) significantly inhibited SCD protein expression in muscle and subcutaneous adipose tissue, and reduced the Δ6d expression in muscle. There was no significant effect of the diet on ACC protein expression. Inhibition of the Δ6d expression was associated with a decrease in n-6 PUFA level in muscles, whereas repression of SCD protein was related to a lower oleic acid (C18:1 cis-9) content in the adipose tissue. Expression of ACC, SCD and Δ6d proteins was found to be relatively higher in subcutaneous adipose tissue when compared with longissimus muscle. It is suggested that dietary manipulation of fatty acid composition in ruminants is mediated, at least partially, through the regulation of lipogenic enzymes expression and that regulation of the bovine lipogenic enzymes expression is tissue specific.  相似文献   

10.
The present study investigated whether enrichment of the pig maternal diet with n-3 polyunsaturated fatty acids (PUFA) affects the fatty-acid composition of female piglets via enhancing of expression of the lipogenic enzymes Δ5-desaturase (Δ5d) and Δ6-desaturase (Δ6d). The sows (50% Landrace × 50% Large White) were fed a control diet or one of the experimental diets starting at day 45 in gestation. The experimental diets were supplemented either with linseed oil or fish oil, whereas the control diet contained palm oil. Expression of Δ5d and Δ6d, and fatty-acid composition was determined by Western blotting and gas-liquid chromatography, respectively, in muscle, subcutaneous adipose tissue and liver. The highest Δ5d protein expression was observed in the piglets’ muscle, followed by subcutaneous adipose tissue, with the lowest level in the liver. Expression of Δ6d in the piglets’ tissues followed an opposite pattern, and was highest in the liver, followed by subcutaneous adipose tissue, with the lowest level in muscle. Supplementation of the maternal diet with fish oil or linseed oil increased the level of n-3 PUFA of the piglets in a tissue-specific manner. The response of Δ6d and Δ5d protein expression in female piglets, with average birth weight 2.4 kg, to the dietary manipulation was also tissue-specific. It is suggested that the increase in n-3 PUFA content in the progeny was related, at least partially, to the activation of Δ6d and Δ5d expression.  相似文献   

11.
The supply of polyunsaturated fatty acids (PUFA) is important for optimal fetal and postnatal development. We have previously shown that leptin levels in suckling rats are reduced by maternal PUFA deficiency. In the present study, we evaluated the effect of maternal dietary intake of (n-3) and (n-6) PUFA on the leptin content in rat milk and serum leptin levels in suckling pups. For the last 10 days of gestation and throughout lactation, the rats were fed an isocaloric diet containing 7% linseed oil (n-3 diet), sunflower oil (n-6 diet), or soybean oil (n-6/n-3 diet). Body weight, body length, inguinal fat pad weight, and adipocyte size of the pups receiving the n-3 diet were significantly lower during the whole suckling period compared with n-6/n-3 fed pups. Body and fat pad weights of the n-6 fed pups were in between the other two groups at week one, but not different from the n-6/n-3 group at week 3. Feeding dams the n-3 diet resulted in decreased serum leptin levels in the suckling pups compared with pups in the n-6/n-3 group. The mean serum leptin levels of the n-6 pups were between the other two groups but not different from either group. There were no differences in the milk leptin content between the groups. These results show that the balance between the n-6 and n-3 PUFA in the maternal diet rather than amount of n-6 or n-3 PUFA per se could be important for adipose tissue growth and for maintaining adequate serum leptin levels in the offspring.  相似文献   

12.
This work was performed to elucidate whether growth hormone (GH)-mediated loss of adipose tissue and responses in plasma insulin and leptin are modulated by diet composition. 12-month-old rats were first fed a high-fat (HF) diet or a low-fat (LF) diet for 14 weeks. After that, GH or saline was administered to rat groups that were maintained on either HF or LF diets or that were switched from the HF to the LF diet. All 6 groups had free access to food. One additional saline group was pair-fed with the GH group that was switched from the HF to the LF diet. The caloric consumption of this latter group was also translated to yet another GH group receiving restricted amounts of the HF diet. GH was given in a total dose of 4 mg/kg/d for three weeks. After sacrifice, blood was collected and tissues were excised. In groups injected with saline, the weight of excised adipose tissue was 60 +/- 4.7, 41 +/- 3.8 and 50 +/- 4.5 g in animals that continued with the HF diet, LF diet, or that were switched from HF to LF, respectively. Corresponding figures after GH treatment were significantly (p < 0.05) decreased to 38 +/- 2.7, 30 +/- 2.3, and 31 +/- 2.7 g, respectively. Pair-feeding had no effect, whereas only 26 +/- 3.0 g of adipose tissue was retrieved in rats fed restricted amounts of HF diet while receiving GH. In this group, plasma insulin and leptin were also significantly (p < 0.05) depressed compared with other GH groups, especially to the group fed the unrestricted HF diet (203 +/- 35 vs. 1345 +/- 160 pmol/l and 9.3 +/- 1.2 vs. 31 +/- 4.4 micro g/l). In conclusion, this study shows that GH mediates breakdown of adipose tissue under a variety of dietary conditions, and that induction of hyperinsulinemia can be prevented if GH treatment is combined with restricted feeding of a diet which is relatively low in carbohydrates and rich in fat. This will also promote a fall of plasma leptin.  相似文献   

13.
Few studies have examined effects of feeding animals a diet deficient in n-6 polyunsaturated fatty acids (PUFAs) but with an adequate amount of n-3 PUFAs. To do this, we fed post-weaning male rats a control n-6 and n-3 PUFA adequate diet and an n-6 deficient diet for 15 weeks, and measured stable lipid and fatty acid concentrations in different organs. The deficient diet contained nutritionally essential linoleic acid (LA,18:2n-6) as 2.3% of total fatty acids (10% of the recommended minimum LA requirement for rodents) but no arachidonic acid (AA, 20:4n-6), and an adequate amount (4.8% of total fatty acids) of α-linolenic acid (18:3n-3). The deficient compared with adequate diet did not significantly affect body weight, but decreased testis weight by 10%. AA concentration was decreased significantly in serum (− 86%), brain (− 27%), liver (− 68%), heart (− 39%), testis (− 25%), and epididymal adipose tissue (− 77%). Eicosapentaenoic (20:5n-3) and docosahexaenoic acid (22:6n-3) concentrations were increased in all but adipose tissue, and the total monounsaturated fatty acid concentration was increased in all organs. The concentration of 20:3n-9, a marker of LA deficiency, was increased by the deficient diet, and serum concentrations of triacylglycerol, total cholesterol and total phospholipid were reduced. In summary, 15 weeks of dietary n-6 PUFA deficiency with n-3 PUFA adequacy significantly reduced n-6 PUFA concentrations in different organs of male rats, while increasing n-3 PUFA and monounsaturated fatty acid concentrations. This rat model could be used to study metabolic, functional and behavioral effects of dietary n-6 PUFA deficiency.  相似文献   

14.
The acute phase response is characterized by elevations in serum triglyceride levels due to both an increase in hepatic VLDL production and a delay in the clearance of triglyceride rich lipoproteins secondary to a decrease in lipoprotein lipase (LPL) activity. Recently there has been a marked increase in our understanding of factors that regulate LPL activity. GPIHBP1 facilitates the interaction of LPL and lipoproteins thereby allowing lipolysis to occur. Angiopoietin like proteins (ANGPTL) 3 and 4 inhibit LPL activity. In the present study, treatment of mice with LPS, an activator of TLR4 and a model of Gram-negative infections, did not alter the expression of GPIHBP1 in heart or adipose tissue. However, LPS decreased the expression of ANGPTL3 in liver and increased the expression of ANGPTL4 in heart, muscle, and adipose tissue. Serum ANGPTL4 protein levels were markedly increased at 8 and 16 h following LPS treatment. Administration of zymosan, an activator of TLR2 and a model of fungal infections, also increased serum ANGPTL4 protein and mRNA levels in liver, heart, muscle, and adipose tissue. Finally, treatment of 3T3-L1 adipocytes with LPS or cytokines (TNF alpha, IL-1 beta, and interferon gamma) stimulated ANGPTL4 expression. These studies demonstrate that ANGPTL4 is a positive acute phase protein and the increase in ANGPTL4 could contribute to the hypertriglyceridemia that characteristically occurs during the acute phase response by inhibiting LPL activity.  相似文献   

15.
Conjugated linoleic acid (CLA) isomers have unique effects on tissue lipids. Here we investigated the influence of individual CLA isomers on the lipid weight and fatty acid composition of lipid metabolizing (i.e. liver and retroperitoneal adipose) and lipid sensitive (i.e. spleen and heart) tissues. Female mice (8 week old; n=6/group) were fed either a control or one of the two CLA isomer supplemented (0.5%) diets for 8 weeks. The cis-9, trans-11-CLA diet reduced the 18:1n-9 wt% by 20-50% in liver, adipose tissue, and spleen, reduced the spleen n-3 polyunsaturated fatty acid (PUFA) by 90%, and increased the n-6 PUFA wt% by 20-50% in all tissues except heart. The trans-10, cis-12-CLA reduced both the n-6 and n-3 PUFA wt% in liver (>50%), reduced the heart n-3 PUFA wt% by 25%, and increased the wt% of spleen n-3 PUFA by 700%. The functional consequences of such changes in tissue fatty acid composition need to be investigated.  相似文献   

16.
17.
18.
We sought to test the hypothesis that dietary long-chain n-3 PUFA (LC n-3 PUFA) in fish oil stimulate the gene expression of lipoprotein lipase (LPL) in human adipose tissue (AT). In a randomized, double blind, placebo-controlled, cross-over study, 51 male subjects expressing an atherogenic lipoprotein phenotype (ALP) had their diets supplemented with fish oil for 6 weeks. As we previously reported for this group, supplementation with LC n-3 PUFA produced a decrease in fasting plasma triglyceride (TG) (-35%, P < 0.05), attenuation of the postprandial TG response (area and incremental area under the curve; AUC and IAUC, P < 0.05), and a decrease in small, dense LDL. The present study extended these observations by showing that these changes were accompanied by a marked increase in the concentration of LPL mRNA in adipose tissue (AT-LPL mRNA, +55%, P = 0.003) and post-heparin LPL activity (PH-LPL, +31%, P = 0.036). There was also evidence of an association between LPL gene expression and polymorphism in the apolipoprotein E gene. We conclude that the favorable influence of dietary n-3 PUFA on the ALP may be mediated, in part, through an increase in the plasma activity and gene expression of lipoprotein lipase in human adipose tissue.  相似文献   

19.
20.
Polyunsaturated fatty acids (PUFA) can modulate the immune response, however the mechanism by which they exert this effect remains unclear. Previous studies have clearly demonstrated that the cis-9, trans-11 isomer of conjugated linoleic acid (c9,t11-CLA), found predominantly in beef and dairy products, can modulate the response of immune cells to the toll-like receptor (TLR) 4 ligand, lipopolysaccharide (LPS). This study aimed to investigate further the mechanism by which these effects are mediated. Treatment of macrophages with c9,t11-CLA significantly decreased CD14 expression and partially blocked its association with lipid rafts following stimulation with LPS. Furthermore the c9,t11-CLA isomer inhibited both nuclear factor-κB (NF-κB) and IRF3 activation following TLR4 ligation while eicosapentaenoic acid (EPA) only suppressed NF-κB activation. Given that the ability of LPS to activate IRF3 downstream of TLR4 depends on internalisation of the TLR4 complex and involves CD14, we examined TLR4 endocytosis. Indeed the internalisation of TLR4 to early endosomes following activation with LPS was markedly inhibited in c9,t11-CLA treated cells. These effects were not seen with the n-3 fatty acid, EPA, which was used as a comparison. Our data demonstrates that c9,t11-CLA inhibits IRF3 activation via its effects on CD14 expression and localisation. This results in a decrease in the endocytosis of TLR4 which is necessary for IRF3 activation, revealing a novel mechanism by which this PUFA exerts its anti-inflammatory effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号