首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential replication of male and female X-chromosomes in Drosophila   总被引:1,自引:1,他引:0  
The replication patterns of larval salivary gland chromosomes of D. hydei and D. melanogaster were studied by autoradiography with tritiated thymidine injected in mid third instar larvae. The male X chromosome showed a different replication behavior in comparison to that of the female X chromosome and autosomes. It is concluded that the male X chromosome finishes its replication earlier than the female X chromosome. Moreover, the time needed for a complete replication cycle of individual identical replication units was found to be shorter in the male than in the female X chromosome. Although the whole X chromosomes behave different there were no differences observed in the sequence of the discontinuous labeling patterns of the two types of X chromosome. One autosomal replication unit was observed which showed a different replication behavior in males and females. The possible origin of the differential behavior of the two X chromosomes is discussed in terms of their difference in degree of polyteny.  相似文献   

2.
The autosomal salivary gland chromosome puffing patterns of Drosophila simulans are described and compared with the puffing patterns of the sibling species D. melanogaster. During the late third larval instar and the prepupal period the patterns of puffing activity of these two species are similar — approximately 50% of the puffs common to both species showing identical activities. The remaining puffs differ in their timing of activity, or in their mean sizes, or in both of these parameters. A number of puffs (14) found in D. simulans have not been regularly observed in the Oregon stock of D. melanogaster but are active in other D. melanogaster strains. One puff (46 A) of D. melanogaster was absent from D. simulans and forms a heterozygous puff in hybrids, when the homologous chromosomes are synapsed. When the homologues are asynapsed a puff at 46 A is restricted to the melanogaster homologue. The puff at 63E on chromosome arm 3L is considerably smaller in D. simulans than in D. melanogaster and this size difference is autonomous in hybrids. Other puffs not common to both species behave non-autonomously in the species hybrid, even when the homologous chromosomes are asynapsed.  相似文献   

3.
Four major puffs are inducible by heat shock in the larval salivary gland chromosomes of D. pseudoobscura. Two of these puffs are present at 23 and 39–40 on the right arm of the X chromosome and two are present at 53 and 58 on chromosome 2. By means of in situ hybridization, residual homologies were demonstrated between the puffs at 23 in D. pseudoobscura and at 63C in D. melanogaster, and between the two chromosome 2 puffs of D. pseudoobscura and 87A and 87C of D. melanogaster. RNA synthesis was monitored as a function of 3H-uridine incorporation in the major heat-induced puffs of D. pseudoobscura and was found to be equivalent in males and females indicating dosage compensation of the two X-linked loci. The evolution of the regulatory controls of these genes is discussed.  相似文献   

4.
In situ hybridization of cRNA transcribed from cloned D. melanogaster heat shock sequences to D. hydei chromosomes has shown that the D. hydei locus 2–32 A corresponds to the D. melanogaster locus 87 A/C and the D. hydei locus 2–36 A to the D. melanogaster locus 95 D, while the D. hydei locus 4–81 B corresponds to the D. melanogaster locus 63 BC. No hybridization to D. hydei chromosomes was found with cRNA transcribed from a clone containing the sequences encoded by the D. melanogaster locus 87 C. Neither D. melanogaster heat shock RNA nor D. virilis heat shock RNA hybridized significantly to the D. hydei heat shock locus 2–48 B. Furthermore, D. hydei heat shock RNA did not hybridize to the cytological homologs of locus 2–48 B found in D. repleta or in D. virilis. D, hydei heat shock. RNA did hybridize to the cytological homologs of locus 2–48 B in D. neohydei and D. eohydei, both of which belong to the hydei subgroup.  相似文献   

5.
Drosophila auraria and its sibling species, D. biauraria, D. triauraria, and D. quadraria are unique among Drosophila species in that their salivary gland chromosomes exhibit Balbiani rings. In this report we present a cytological map of D. auraria and information on the developmental profiles of its puffs and Balbiani rings. Information is presented on the existence of tandem inverted duplications involving the Balbiani ring regions and other regions of the chromosomes, and data are given concerning the puffing patterns of the duplicated bands. Possible homologies between puffs of D. melanogaster and D. auraria and certain differences between the two species in the developmental sequences of the active loci are discussed.  相似文献   

6.
Summary The bristle pattern along the first longitudinal vein of the wing ofD. hydei differs from that ofD. melanogaster. Instead of a triple row,D. hydei and some allied species show a pattern of five parallel bristle rows of which the medial row (MR) is comparable to the medial triple row (MTR) ofD. melanogaster. Cells of the MR can be made homozygousyellow (y) by induction of mitotic recombination in heterozygousy/y + females. Until 70 h after egg laying (AEL), the MR clones inD. hydei overlap with one or more of the accompanying dorsal and ventral bristle rows. Between 70 and 120 h AEL the MR clones only overlap with dorsal bristle rows. Some time later they also become separated from both dorsal rows. The resulting MR clone pattern fits with the overall longitudinal clone pattern in the wing blade ofD. melanogaster described by Bryant (1970) and others. The MR clones inD. hydei, however, often show a fragmented appearance with many indentations of the surroundingy + tissue even when induced after fixation of the DV compartment boundary. This result contrasts with the commonly held notion, derived from work withD. melanogaster, that compartment boundaries are smooth lines.  相似文献   

7.
Fluorochrome-labeled RNA allows the rapid detection of in situ hybrids without the need for long exposure times as in the autoradiographical hybridisation methods. Resolution is high because of the high resolving power of fluorescence microscopy. The application of a previously reported method for the hybrido-cytochemical detection of DNA sequences to polytene chromosomes of Drosophilia is described. — The specificity and sensitivity of the method are demonstrated by the hybridisation with polytene chromosomes of 1) rhodamine-labeled 5S RNA, to the 5S rRNA sites of D. melanogaster (56F) and D. hydei (23 B), 2) rhodamine-labeled RNA complementary to a plasmid containing histone genes, to the 39DE region of D. melanogaster, 3) rhodamine-labeled D. melanogaster tRNA species (Gly-3 and Arg-2), to their respective loci in D. melanogaster, 4) rhodamine-labeled RNA complementary to the insert of plasmid 232.1 containing part of a D. melanogaster heat shock gene from locus 87 C, to D. hydei heat shock locus 2-32A. In the latter instance it was possible to demonstrate the labeling of a double band which escaped unambiguous detection by autoradiography in the radioactive cytochemical hybridisation procedure because of the low topological resolution of autoradiograms. — The sensitivity of the fluorochrome-labeled RNA method is compared with the radioactive methods which use 3H- or 125I-labeled RNAs. The factors governing the sensitivity and the number of bound fluorochrome molecules to be expected are discussed.Dedicated to Professor W. Beermann in honour of his 60th birthday  相似文献   

8.
The sequence organization of four different families of Y chromosomal repetitive DNA is characterized at three levels of spatial extension along the Y chromosome of Drosophila hydei. At the lowest level of resolution, DNA blot analysis of Y chromosomal fragments of different lengths and in situ hybridization experiments on metaphase chromosomes demonstrate the clustering of each particular sequence family within one defined region of the chromosome. At a higher level of resolution, family specific repeats can be detected within these clusters by crosshybridization within 10–20 kb long continuous stretches of cloned DNA in EMBL3 phages. At the highest level of resolution, detailed sequence analysis of representative subclones about 1 kb in length reveals a satellite-like head to tail arrangement of family specific degenerated subrepeats as the building scheme common to all four families. Our results provide the first comparative sequence analysis of three novel families of repetitive DNA on the long arm of the F chromosome of D. hydei. Additional data are presented which support the existence of two related subfamilies of repetitive DNA on the short arm of the Y chromosome.  相似文献   

9.
Drosophila hydei rRNA genes from different chromosomes and from different stocks have been studied by restriction enzyme analysis. In DNA from wild-type females, about half of the X chromosomal rRNA genes are interrupted by an intervening sequence within the 28S coding region. In contrast to D. melanogaster, the intervening sequences belong to a single size class of 6.0 kb. Although there are two nucleolus organizers on the Y chromosome, genes containing the intervening sequence seem to be restricted to the X chromosome. — As shown in four cloned rDNA fragments, the nontranscribed spacers differ in length by having varying numbers of a 242 base pair sequence located in tandem in the right section of the spacer. In genomic rDNA, the spacers also differ in length by a regular 0.25 kb interval. Spacers with between 5 and 15 subrepeats occur frequently within the X and Y chromosomal nucleolus organizers in different D. hydei stocks; shorter and longer spacers are also present but are relatively rare. — Although each genotype is characterized by different frequencies of some spacer classes, the prominent spacer length heterogeneity pattern is similar among the different nucleolus organizers and, therefore, seems to be conserved during evolution.This paper is dedicated to Professor Dr. W. Beermann on the occasion of his 60th birthday  相似文献   

10.
11.
Prophase chromosomes of Drosophila hydei were stained with 0.5 g/ml Hoechst 33258 and examined under a fluorescence microscope. While autosomal and X chromosome heterochromatin are homogeneously fluorescent, the entirely heterochromatic Y chromosome exhibits an extremely fine longitudinal differentiation, being subdivided into 18 different regions defined by the degree of fluorescence and the presence of constrictions. Thus high resolution Hoechst banding of prophase chromosomes provides a tool comparable to polytene chromosomes for the cytogenetic analysis of the Y chromosome of D. hydei. — D. hydei heterochromatin was further characterized by Hoechst staining of chromosomes exposed to 5-bromodeoxyuridine for one round of DNA replication. After this treatment the pericentromeric autosomal heterochromatin, the X heterochromatin and the Y chromosome exhibit numerous regions of lateral asymmetry. Moreover, while the heterochromatic short arms of the major autosomes show simple lateral asymmetry, the X and the Y heterochromatin exhibit complex patterns of contralateral asymmetry. These observations, coupled with the data on the molecular content of D. hydei heterochromatin, give some insight into the chromosomal organization of highly and moderately repetitive heterochromatic DNA.  相似文献   

12.
The chromatin organization in developing germ cells of Drosophila hydei males was studied with the highly sensitive DNA stain DAPI (4, 6-diamidino-2-phenylindole dichloride). The prophase of meiosis I is characterized by decondensed chromosomes and only late during this stage do they condense rapidly. The sex chromosomes show allocycly. During postmeiotic development the final condensation of chromatin is preceded by a cycle of condensation and subsequent decondensation. Meiotic chromosomes were studied in more detail after orcein staining. Pairing sites of the sex chromosomes could be localized in the distal end of the heterochromatic arm of the X chromosome and distally in both arms of the Y chromosome. The various heterochromatic parts of the genome condense differentially in meiosis. Chromatin reorganization was studied cytochemically with antibodies raised against histones H1 and H2A of D. melanogaster. The core histone H2A is present in spermatid nuclei until the late elongation stage. However, histone H1 is not found in the chromatin later than the early primary spermatocyte stage. Thus, chromatin reorganization during spermatogenesis in D. hydei is complex. The process is discussed with regard to possible functions.  相似文献   

13.
Salivary-gland nuclei ofDrosophila hydei were pulse-labeledin vitro with3H-thymidine and studied autoradiographically in squash preparations. The distribution of radioactive label over the length of the polytene chromosomes was discontinuous in most of the labeled nuclei; in some nuclei the pattern of incorporation was continuous. Comparison of the various labeling patterns of homologous chromosome regions in different nuclei showed that specific replicating units are replicated in a specific order. By combining autoradiography with cytophotometry of Feulgen-stained chromosomes, it was possible to correlate thymidine labeling of specific bands with their DNA content. The resulting data indicate that during the S-period many or perhaps all of the replicating units in a salivary-gland nucleus start DNA synthesis simultaneously but complete it at different times. Furthermore, the data support the hypothesis that the chromomere is a unit of replication or replicon. The DNA content of haploid chromomeres was found to be about 5×10-4 pg for the largest bands inDrosophila hydei. From the results of H3-thymidine autoradiography and Feulgen-cytophotometry on neuroblast and anlage nuclei it was concluded that during growth of the polytenic nucleus heterochromatin is for the most part excluded from duplication. The results of DNA measurements in interbands of polytene chromosomes do not agree with a multistrand structure for the haploid chromatid. A chromosome model is proposed which is in accordance with the reported results and with current views concerning the replicative organization of chromosomes.  相似文献   

14.
The polytene chromosomes of two new species of Drosophila, D. sechellia and D. orena, both members of the melanogaster species subgroup, are described. The chromosomes of D. sechellia, a species endemic to certain islands in the Seychelles, are homosequential with those of D. simulans and D. mauritiana. The chromosomes of D. orena, a species from the mountains of west Africa, are very similar to those of D. erecta. We discuss the interrelationships of the eight known species of the melanogaster species subgroup, based upon an analysis of their chromosome banding patterns.  相似文献   

15.
In situ hybridization of sea urchin (Psammechinus miliaris, Lytechinus pictus and Strongylocentrotus purpuratus) histone messenger RNA has been used to map complementary sequences on polytene chromosomes from Drosophila melanogaster. The sea urchin RNA hybridizes to the polytene regions from 39D3 through 39E1-2, including both of these bands (39D2 may also be included). This region is identical to the one which hybridizes most heavily with non-polyadenylated cytoplasmic RNA from D. melanogaster tissues. Sea urchin mRNAs coding for several individual histones each hybridize across the entire region from 39D3 (or D2) through 39E1-2, as would be expected if the individual mRNA sequences are interspersed. In view of the apparently even distribution of sequences complementary to histone mRNA within the 39D3-39E1-2 region, the significance of the several polytene bands in this region remains an open question. Biochemical characterization of the hybrids between sea urchin histone mRNA and D. melanogaster DNA suggests that sea urchin mRNAs for several of the histone classes have some portions which retain enough sequence homology with the D. melanogaster sequences to form hybrids, although the hybrids have base pair mismatches. In situ hybridization of chromosomes in which region 39D-E is ectopically paired show no evidence of sequence homology in the chromosome region with which 39D-E is associated.  相似文献   

16.
Temperature shock (TS) results in activation of a specific set of puffs in polytene nuclei of D. melanogaster. Earlier studies in this species from several laboratories revealed certain unique features of the major TS puff at 93D locus, which is also specifically induced by benzamide (BM) and by incubation of glands in heat shocked glands' homogenate (HSGH). We have now extended studies on TS response to several other species of Drosophila to ascertain whether loci homologous to 93D puff of D. melanogaster are present in other species. In polytene nuclei of two closely related (D. ananassae, D. kikkawai) and in two distantly related species (D. hydei, D. nasuta), six to nine puffs are induced by TS. Interestingly, in each species one of the major TS puffs, viz., 2L-2C in D. ananassae, E-11BC in D. kikkawai, 2R-48A in D. nasuta and 2-48C in D. hydei, is also specifically induced by BM, autologous species' HSGH and vitamine-B6 (vit-B6) treatment. HSGH of a different species fails to induce these puffs. These puffs thus resemble the 93D locus of D. melanogaster, although the 93D puff does not respond to vit-B6. These observations are discussed in relation to the conservation of 93D puff locus in different species of Drosophila.  相似文献   

17.
Changes in puffing activity of fat body (FB) and midgut (MG) chromosomes of Drosophila auraria during late larval and white prepupal development as well as after in vitro culture with or without ecdysterone were studied and compared with those of the salivary gland (SG). The Balbiani Rings characteristic of the SG chromosomes of D. auraria, are not formed in FB and MG. Most of the inverted tandem chromosomal duplications that have been found to be common to all three tissues showed differentiation of puffing activity of the bands considered to be homologous. The major early ecdysone puffs 73A and 73B (considered to be homologues of D. melanogaster puffs 74EF and 75B, respectively), together with other early ecdysone puffs were present in all three tissues. Clear intermoult and postintermoult puffs were not evident in FB and MG chromosomes. However, a small set of late ecdysone puffs could be scored in FB, while no late ecdysone puffs were abserved in MG. Other tissue-specific puffs were identified, but a very small number of them were limited to MG.by W. Beermann  相似文献   

18.
V. J. Birstein 《Genetica》1981,56(3):167-173
The Ag-AS technique was used for staining the polytene chromosomes of D. melanogaster and D. lummei. Bands were stained dark reddish-brown, interbands light yellow. A toromere was heavily stained on the sixth chromosome of D. lummei. The staining intensity of nucleoli was lower than that of chromosomes. During a prolonged staining ectopic threads and the nonhomogeneous structure of nucleoli were revealed. Pretreatment with RNase caused slight changes in the silver staining pattern of chromosomes; pretreatment with DNase did not result in any visible changes, while after preincubation with proteolytic enzymes chromosome morphology was destroyed. Hyaluronidase and lysozyme removed the silver-reducing components from chromosomes without destroying the general chromosome structure. Each of these two enzymes acts specifically: hyaluronidase affects the morphology of chromosomes, but not nucleoli and bands at heat shock puffs, whereas the action of lysozyme is probably evenly distributed between chromosomes and nucleoli.  相似文献   

19.
The distribution of cohesin complex in polytene chromosomes of Drosophila melanogaster was studied. Cohesin is a complicated protein complex which is regulated by the DRAD21 subunit. Using immunostaining for DRAD21p, the cohesins were shown to be preferentially located in the interband regions. This specificity was not characteristic for puffs, where uniform staining was observed. The presence of a few brightly fluorescent regions (five to ten per chromosome arm) enriched with cohesin complexes was shown. Some of these regions had permanent location, and the others, variable location. No antibody binding was detected in the chromocenter. Immunostaining of interphase nuclei of neuroblasts revealed large cohesin formations. On the polytene chromosomes of D. melanogaster, the Drad21 gene was mapped to the chromocentric region (81) of the L arm of chromosome 3.  相似文献   

20.
A monoclonal antibody was raised against Drosophila melanogaster histone H1. Immunoscreening of proteolytic cleavage fragments of H1 and of a set of all possible overlapping synthetic octapeptides corresponding to the amino acid sequence of H1, revealed that the antibody recognizes an epitope within the sequence 207VTAAKPKA214 near the centre of the carboxy-terminal tail. This antibody gives positive immunofluorescence over the entire length of native D. melanogaster polytene chromosomes isolated from salivary glands by microdissection at physiological pH and ionic strength. Bands, interbands and puffs are all seen to contain H1. The immunofluorescence over puffs, albeit lower than that over bands and interbands, indicates that chromatin decondensation can occur without complete loss of H1 in these structures. The reaction of the antibody with bands suggests that the segment of the C-terminal tail containing the epitope may be exposed in the condensed 30 nm chromatin filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号