共查询到20条相似文献,搜索用时 15 毫秒
1.
Dependence of mammalian DNA replication on DNA supercoiling. II. Effects of novobiocin on DNA synthesis in Chinese hamster ovary cells. 总被引:2,自引:0,他引:2
Novobiocin, an inhibitor of gyrase-induced DNA supercoiling and DNA replication in prokaryotes, inhibited the incorporation of DNA precursors into DNA in both intact and permeable Chinese hamster ovary cells; much higher concentrations were required for permeable cells, in which no new replicons were initiated. Nucleoids were prepared from cells that were incubated for 60 min with 200 micrograms/ml novobiocin, made permeable, and incubated with 0--50 micrograms/ml ethidium bromide. Sedimentation of the nucleoids in neutral sucrose gradients suggested that the number of supercoils in the average nucleoid had been reduced by prior incubation with novobiocin. In intact cells, novobiocin is required inside the cell for continued inhibition of DNA synthesis, suggesting that it does not act directly on the DNA. Alkaline sucrose gradient profiles of DNA synthesized in the presence of novobiocin in intact cells indicated that the drug inhibited replicon initiation while having little if any effect on chain elongation. These data are consistent with the idea that an activity similar to the bacterial gyrase generates supercoils in mammalian DNA and produces the proper conformation for the initiation of DNA replication. 相似文献
2.
Differential effect of aphidicolin on adenovirus DNA synthesis and cellular DNA synthesis. 总被引:7,自引:5,他引:7 下载免费PDF全文
There is strong evidence for a participation of DNA polymerase gamma in the replication of adenovirus (Ad) DNA. To study a possible additional role of DNA polymerase alpha we measured the effect of aphidicolin on viral DNA replication. In intact cells, aphidicolin inhibits Ad DNA synthesis weakly. The drug concentration required for 50% inhibition of Ad DNA replication was 300-400 fold higher than for a similar effect on cellular DNA synthesis. Such a differential inhibition was also observed in AGMK cells doubly infected with SV40 and the simian adenovirus SA7. No evidence was found for modification of aphidicolin in infected cells or for a change in aphidicolin sensitivity of DNA polymerase alpha after infection. The extent of inhibition of purified DNA polymerase alpha was dependent upon the dCTP concentration. The same situation was observed when DNA synthesis was studied in isolated nuclei from uninfected cells. However, in nuclei from Ad infected cells no effect of dCTP on aphidicolin sensitivity was found. These results were taken as evidence that DNA polymerase alpha does not participate in the replication of adenovirus DNA. 相似文献
3.
Polar encapsidation of adenovirus DNA: cloning and DNA sequence of the left end of adenovirus type 3 总被引:6,自引:6,他引:0
The left-end adenovirus type 3 DNA sequence is very similar to those of other subgroup B adenoviruses, especially in the area between the HinfI site (320 base pairs) and the early-region Ia gene. This segment of the genome has been implicated as necessary for the left-end polarity of adenovirus DNA encapsidation. This segment and the sequences flanking it are compared with the corresponding sequences of adenovirus type 5 and adenovirus type 12, and the extent and pattern of intersubgroup homologies are discussed. 相似文献
4.
M Longiaru J E Ikeda Z Jarkovsky S B Horwitz M S Horwitz 《Nucleic acids research》1979,6(10):3369-3386
Aphidicolin inhibits adenovirus DNA replication in HeLa cells and in a cell-free, infected, nuclear extract in which viral DNA is elongated. The compound inhibits alpha DNA polymerase, extensively purified from HeLa cells, but has little or no effect on the beta or gamma DNA polymerases similarly purified. Aphidicolin does not affect thymidine uptake by cells nor does synthesis as it also inhibits DNA replication in uninfected cells. The inhibition by aphidicolin is reversible if the drug is removed within 18 hrs after addition to HeLa or Chinese Hamster Ovary cells but the cells are irreversibly affected if the drug remains for 48 hours. 相似文献
5.
Novobiocin and nalidixic acid, inhibitors of the bacterial enzyme DNA gyrase, inhibit DNA, RNA and protein synthesis in several human and rodent cell lines. The sensitivity of DNA synthesis (both replicative and repair) to inhibition by novobiocin and nalidixic acid is greater than that of protein synthesis. Novobiocin inhibits RNA synthesis about half as effectively as it does DNA synthesis, whereas nalidixic acid inhibits both equally well. Replicative DNA synthesis, as measured by incorporation of [3H]thymidine, is blocked by novobiocin in a number of cell strains; the inhibition is reversible with respect to both DNA synthesis and cell killing, and continues for as long as 20--30 h if the cells are kept in novobiocin-containing growth medium. Both novobiocin and nalidixic acid inhibit repair DNA synthesis (measured by BND-cellulose chromatography) induced by ultraviolet light or N-methyl-N'-nitro-N-nitrosoguanidine (but not that induced by methyl methanesulfonate) at lower concentration (as low as 5 micrograms/ml) than those required to inhibit replicative DNA synthesis (50 micrograms/ml or greater). Neither novobiocin nor nalidixic acid alone induces DNA repair synthesis. Incubation of ultraviolet-irradiated cells with 10--100 micrograms/ml novobiocin results in little, if any, further reduction of colony-forming ability (beyond that caused by the ultraviolet irradiation). Novobiocin at sufficiently low concentrations (200 micrograms/ml) apparently generates a quiescent state (in terms of cellular DNA metabolism) from which recovery is possible. Under more drastic conditions of time in contact with cells and concentration, however, novobiocin itself induces mammalian cell killing. 相似文献
6.
Novobiocin was equipotent in inhibiting DNA and RNA synthesis in cultured mouse L cells. It also suppressed in vitro DNA and RNA synthesis in permeabilized L cells and nuclei; 50 percent inhibition of DNA and RNA synthesis was obtained by 1 mM and 20 mM novobiocin, respectively. ATP antagonized the effect of novobiocin. Nalidixic acid had a weak inhibitory effect on in vitro DNA synthesis; 10 mM nalidixic acid showed 60 percent inhibition. ATP did not antagonize nalidixic acid. The inhibitory effect of novobiocin exceeded that of aphidicolin. These findings suggest a participation of a gyrase- and/or type II topoisomerase-like enzyme in the DNA replication machinery in L cells. 相似文献
7.
Escherichia coli DNA synthesis in vitro: insensitivity of ATP-dependent DNA repair to inhibition by novobiocin. 总被引:3,自引:2,他引:3 下载免费PDF全文
Novobiocin, an effective inhibitor of DNA replicaion in Escherichia coli, is shown to have no effect on the ATP-dependent DNA repair carried out by toluenized cells after ultraviolet irradiation. Therefore novobiocin can be considered a selective inhibitor of replicative DNA synthesis in vitro. 相似文献
8.
Alterations to controls of cellular DNA synthesis by adenovirus infection. 总被引:8,自引:7,他引:8 下载免费PDF全文
Human adenovirus type 5 and temperature-sensitive mutants ts36, ts37, and ts125 induced cellular DNA synthesis in quiescent rodent cells at both permissive and nonpermissive temperatures. Cellular DNA synthesis induced by adenovirus type 5 or by serum required protein synthesis for both initiation and continuation, whereas viral DNA synthesis was not dependent upon continued protein synthesis once it was initiated. Both cellular and viral DNA replication was induced in adenovirus type 5-infected cells in the presence of dibutyryl cyclic AMP at concentrations which inhibited induction by serum which suggested that some of the controls of DNA synthesis in serum-treated and virus-infected cells are different. After adenovirus infection of quiescent cells, there was a decrease in the number of cells with G1 DNA content and an increase in cells with G2 diploid and greater DNA contents. Thus, adenovirus type 5 induces a complete round of cellular DNA replication, but in some cells, it induces a second round without completion of a normal mitosis. These results suggest that adenovirus type 5 is able to alter cell growth cycle controls in a way which may be related to its ability to transform cells. 相似文献
9.
Effects of adenovirus infection on rRNA synthesis and maturation in HeLa cells. 总被引:11,自引:1,他引:11 下载免费PDF全文
The production of cytoplasmic and nucleolar rRNA species was examined in HeLa cells infected with high multiplicities of adenovirus type 5. Both 28S and 18S rRNA newly synthesized in infected cells ceased to enter the cytoplasm as reported previously (N. Ledinko, Virology 49: 79-89, 1972; H. J. Raskas, D. C. Thomas, and M. Green, Virology 40: 893-902, 1970). However, the effects on 28S cytoplasmic rRNA were observed considerably earlier in the infectious cycle than those on 18S rRNA. The inhibition of cellular protein synthesis and of the appearance in the cytoplasm of labeled cellular mRNA sequences (G. A. Beltz and S. J. Flint, J. Mol. Biol. 131: 353-373, 1979) were also monitored in infected cultures. During the later periods of an infectious cycle, from 18 h after infection, nucleolar rRNA synthesis and processing and exit of 18S rRNA from the nucleus were inhibited, probably reflecting the failure of infected cells to synthesize normal quantities of ribosomal proteins. The earliest responses of cellular RNA metabolism to adenovirus infection were, however, the rapid and apparently coordinate reductions in the levels of newly synthesized 28S rRNA and cellular mRNA sequences entering the cytoplasm. 相似文献
10.
Mitochondrial DNA synthesis in adenovirus type 2-infected HeLa cells was measured at various times from 0 to 24 h postinfection. Although viral infection effectively turned off host chromosomal DNA synthesis, mitochondrial DNA synthesis was not inhibited. These findings indicate a dissociation between the regulation of host and mitochondrial DNA synthesis after infection with adenovirus type 2. 相似文献
11.
Effects of streptomycin and novobiocin on Staphylococcus aureus gene expression. 总被引:5,自引:2,他引:3 下载免费PDF全文
Streptomycin and novobiocin induced production of protein A and inhibited production of alpha- and beta-hemolysins in mutants of Staphylococcus aureus strains RN450 and RN1 resistant to these antibiotics. Streptomycin, but not novobiocin, also inhibited propagation of bacteriophages of serological group B, whereas phages of group A were unaffected. Streptomycin had to be present at adsorption of the phage, and 10 mM CACL2 reversed the inhibitory effect. Lysogenization and competence induction occurred in the presence of streptomycin, suggesting that some early phage genes were expressed. 相似文献
12.
Isolation and partial characterization of single-stranded adenoviral DNA produced during synthesis of adenovirus type 2 DNA. 总被引:3,自引:9,他引:3 下载免费PDF全文
Single-stranded fragments of adenovirus type 2 DNA were isolated from infected KB cells under conditions which retarded reassociation of complementary sequences but did not denature native viral DNA. Of the total intracellular, virus-specific DNA labeled during a 1-h pulse with tritiated thymidine begining 15 h after infection, about 20% was single stranded when fractionated on hydroxylapatite. This DNA shifted predominantly to the double-stranded fraction on hydroxylapatite during an extended chase incubation, suggesting that it may represent single-stranded DNA in replicating intermediates. Furthermore, the single-stranded DNA annealed nearly equally to both strands of the adenovirus genome. These findings indicate that at least portions of both complementary strands of adenovirus type 2 DNA are exposed as single strands during the period of viral DNA synthesis. 相似文献
13.
14.
15.
Initiation rate of adenovirus DNA synthesis in infected cell 总被引:1,自引:0,他引:1
A method was developed to determine the rate of viral DNA synthesis initiation in adenovirus 2-infected cells. The initiation of DNA synthesis appeared as the rate-limiting step for accumulation of viral DNA. The multiplicity of infection slightly influenced the rate of synthesis of viral DNA, and only during the linear phase of viral DNA production. The initiation of DNA-synthesis was found to occur preferentially on newly synthesized DNA molecules. These kinetics data and the effect of novobiocin suggested that binding of viral DNA with some enzymatic complexes favored the replication of a minor, active class of adenovirus DNA molecules. 相似文献
16.
In vitro termination of adenovirus DNA synthesis by a soluble replication complex. 总被引:1,自引:1,他引:0 下载免费PDF全文
The double-stranded DNA from a soluble DNA replication complex that was labeled with deoxyribonucleoside triphosphates and completed in vitro was digested with EcoRI, Sma I, and Hpa I restriction endonucleases. All regions of the adenovirus type 2 genome were labeled in vitro, but restriction fragments derived from the ends of the DNA molecules were relatively more highly labeled than those derived from internal regions. The in vitro endogenous DNA polymerase reaction also exhibited strand-specific labeling near the molecular ends, in that restriciton fragments from the left end were labeled predominantly in the r strand and fragments from the right end were labeled predominantly in the l strand. 相似文献
17.
A Oppenheim Z Sandalon A Peleg O Shaul S Nicolis S Ottolenghi 《Journal of virology》1992,66(9):5320-5328
Encapsidation of simian virus 40 is a complex biological process involving DNA-protein and protein-protein interactions in the formation of a unique three-dimensional structure around the viral minichromosome. A pseudoviral system developed in our laboratory, in which the viral early and late gene products are supplied in trans (by helpers), was used to analyze the encapsidation process independent of viral gene expression. With this experimental system we have discovered a requirement for a specific DNA signal for encapsidation, ses (for simian virus 40 encapsidation signal).ses is present within a 200-bp DNA fragment, which includes, in addition to the viral origin of replication (ori), six GGGCGG repeats (GC boxes) and 26 bp of the enhancer element. Deletion of the GC boxes and the enhancer sequences almost abolished encapsidation, while DNA replication was only moderately decreased. The ability to encapsidate was not regained by reinserting a DNA fragment carrying ses in the sesdeleted plasmid 2 kbp away from the ori, suggesting that for encapsidation the two DNA elements have to be close to each other. These findings afford novel strategies for the investigation of viral encapsidation. 相似文献
18.
Effects of nucleocapsid mutations on human immunodeficiency virus assembly and RNA encapsidation. 总被引:3,自引:12,他引:3 下载免费PDF全文
The human immunodeficiency virus (HIV) Pr55Gag precursor proteins direct virus particle assembly. While Gag-Gag protein interactions which affect HIV assembly occur in the capsid (CA) domain of Pr55Gag, the nucleocapsid (NC) domain, which functions in viral RNA encapsidation, also appears to participate in virus assembly. In order to dissect the roles of the NC domain and the p6 domain, the C-terminal Gag protein domain, we examined the effects of NC and p6 mutations on virus assembly and RNA encapsidation. In our experimental system, the p6 domain did not appear to affect virus release efficiency but p6 deletions and truncations reduced the specificity of genomic HIV-1 RNA encapsidation. Mutations in the nucleocapsid region reduced particle release, especially when the p2 interdomain peptide or the amino-terminal portion of the NC region was mutated, and NC mutations also reduced both the specificity and the efficiency of HIV-1 RNA encapsidation. These results implicated a linkage between RNA encapsidation and virus particle assembly or release. However, we found that the mutant ApoMTRB, in which the nucleocapsid and p6 domains of HIV-1 Pr55Gag were replaced with the Bacillus subtilis MtrB protein domain, released particles efficiently but packaged no detectable RNA. These results suggest that, for the purposes of virus-like particle assembly and release, NC can be replaced by a protein that does not appear to encapsidate RNA. 相似文献
19.
The effect of depurination of polynucleotide templates on the fidelity of DNA synthesis in vitro has been determined. The fidelity of DNA synthesis with Escherichia coli DNA polymerase I, avian myeloblastosis virus DNA polymerase and human placenta DNA polymerase-β is decreased as a result of depurination of the poly[d(A-T)], poly[d(G-C)]and poly[d(A)]templates. The error rate with poly[d(A-T)]increased from to using E. coli Pol I, and from to using the myeloblastosis virus DNA polymerase. Depurination of poly[d(A)]increased the error rate from to using E. coli Pol I, and from to using the DNA polymerase-β from human placenta. Depurination of poly[d(G-C)]resulted in an increase in the error rate with E. coli Pol I from to , and with the virus DNA polymerase from to . This misincorporation is shown to be directly proportional to the extent of depurination. Deletion experiments and alkaline sucrose gradient analyses suggest that the incorporation of complementary and non-complementary nucleotides is dependent on polymerization, and occurs in the same newly synthesized product. Kinetic studies and nearest-neighbor analyses indicate that the incorporation of non-complementary nucleotides occurs randomly as single-base substitutions. The nearest-neighbor studies also suggest that any of the four deoxynucleotides can be incorporated opposite apurinic sites. The number of each nucleotide incorporated relative to the number of apurinic sites was determined to be for dGTP, for dCTP, for dATP and for dTTP with both the poly[d(A-T)] and poly[d(A)] templates. The frequencies of misincorporation relative to the number of apurinic sites with the poly[d(G-C)]template were for dATP, for dTTP, for dGTP and for dCTP. Hydrolysis at the apurinic sites by alkali treatment reversed the effects of depurination on fidelity. The error rates with the depurinated templates were reduced to within 2% of those obtained prior to depurination, providing additional evidence that the misincorporation after depurination results from apurinic sites on the template. These results suggest a possible relationship between depurination of DNA and errors in DNA replication and/or repair. 相似文献
20.
In an attempt to study the mechanism of initiation of adenovirus DNA replication, an assay was developed to investigate the pattern of DNA synthesis in early replicative intermediates of adenovirus DNA. By using wild-type virus-infected cells, it was possible to place the origin of adenovirus type 2 DNA replication within the terminal 350 to 500 base pairs from either of the two molecular termini. In addition, a variety of parameters characteristic of adenovirus DNA replication were compared with those obtained in a soluble nuclear extract competent for viral DNA replication. It was observed that in vitro DNA replication, which is dependent on the exogenously added viral DNA-protein complex as its optimal template, occurs in a manner apparently indistinguishable from the situation in virus-infected cells. This includes the presence of proteinaceous material on the molecular termini of newly initiated viral DNA. 相似文献