首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The HAT-B enzyme complex is responsible for acetylating newly synthesized histone H4 on lysines K5 and K12. HAT-B is a multisubunit complex composed of the histone acetyltransferase 1 (Hat1) catalytic subunit and the Hat2 (rbap46) histone chaperone. Hat1 is predominantly localized in the nucleus as a member of a trimeric NuB4 complex containing Hat1, Hat2, and a histone H3-H4 specific histone chaperone called Hif1 (NASP). In addition to Hif1 and Hat2, Hat1 interacts with Asf1 (anti-silencing function 1), a histone chaperone that has been reported to be involved in both replication-dependent and -independent chromatin assembly. To elucidate the molecular roles of the Hif1 and Asf1 histone chaperones in HAT-B histone binding and acetyltransferase activity, we have characterized the stoichiometry and binding mode of Hif1 and Asf1 to HAT-B and the effect of this binding on the enzymatic activity of HAT-B. We find that Hif1 and Asf1 bind through different modes and independently to HAT-B, whereby Hif1 binds directly to Hat2, and Asf1 is only capable of interactions with HAT-B through contacts with histones H3-H4. We also demonstrate that HAT-B is significantly more active against an intact H3-H4 heterodimer over a histone H4 peptide, independent of either Hif1 or Asf1 binding. Mutational studies further demonstrate that HAT-B binding to the histone tail regions is not sufficient for this enhanced activity. Based on these data, we propose a model for HAT-B/histone chaperone assembly and acetylation of H3-H4 complexes.  相似文献   

3.
A Imhof  A P Wolffe 《Biochemistry》1999,38(40):13085-13093
We have purified the Xenopus histone acetyltransferase Hat1 holoenzyme from oocytes. The holoenzyme contains the catalytic subunit Hat1, the retinoblastoma associated protein RbAp48, and members of the phosphoserine binding family of 14-3-3 proteins. We have determined that the Hat1 holoenzyme specifically acetylates free histone H4 but not nucleosomal histones. RbAp48 is a phosphoprotein that contains a consensus recognition motif for the 14-3-3 proteins. The 14-3-3 proteins provide a regulatory function for the activity of many phosphoproteins. We find that the hugely abundant Hat1 holoenzyme is present in 10 000-fold excess over somatic cell levels. The holoenzyme is localized in the oocyte nucleus where acetylated histones are stored. The oocyte form of the Xenopus Hat1 holoenzyme may represent a specialized storage form of histone acetyltransferase. Following oocyte maturation and subsequent embryogenesis, the Hat1 enzyme is redistributed to the cytoplasm, where new histones are synthesized.  相似文献   

4.
Histone acetyltransferase 1 (HAT1) is implicated for diacetylation of Lys-5 and Lys-12 of newly synthesized histone H4, the biological significance of which remains unclear. To investigate the in vivo role of HAT1, we generated HAT1-deficient DT40 clone (HAT1(-/-)). HAT1(-/-) cells exhibited greatly reduced diacetylation levels of Lys-5 and Lys-12, and acetylation level of Lys-5 of cytosolic and chromatin histones H4, respectively. The in vitro nucleosome assembly assay and in vivo MNase digestion assay revealed that HAT1 and diacetylation of Lys-5 and Lys-12 of histone H4 are dispensable for replication-coupled chromatin assembly. HAT1(-/-) cells had mild growth defect, conferring sensitivities to methyl methanesulfonate and camptothecin that enforce replication blocks creating DNA double strand breaks. Such heightened sensitivities were associated with prolonged late-S/G2 phase. These results indicate that HAT1 participates in recovering replication block-mediated DNA damages, probably through chromatin modulation based on acetylation of Lys-5 and Lys-12 of histone H4.  相似文献   

5.
Chromatin is disassembled and reassembled during DNA repair. To assay chromatin reassembly accompanying DNA double strand break repair, ChIP analysis can be used to monitor the presence of histone H3 near the lesion. The chromatin assembly factor Asf1p, as well as the acetylation of histone H3 lysine 56, have been shown to promote chromatin reassembly when DNA double strand break repair is complete. Using Gal-HO-mediated double strand break repair, we have tested each of the components of the nuclear Hat1p-containing type B histone acetyltransferase complex (NuB4) and have found that they can affect repair-linked chromatin reassembly but that their contributions are not equivalent. In particular, deletion of the catalytic subunit, Hat1p, caused a significant defect in chromatin reassembly. In addition, loss of the histone chaperone Hif1p, when combined with an allele of H3 that mutates lysines 14 and 23 to arginine, has a pronounced effect on chromatin reassembly that is similar to that observed in an asf1Δ. The role of Hat1p and Hif1p is at least partially redundant with the role of Asf1p. Consistent with a more prominent role for Hif1p in chromatin reassembly than either Hat1p or Hat2p, Hif1p exists in complex(es) independent of Hat1p and Hat2p and influences the activity of an H3-specific histone acetyltransferase activity. Our data directly demonstrate the role of the nuclear HAT1 complex (NuB4) components in DNA repair-linked chromatin reassembly.  相似文献   

6.
Newly synthesised histones are thought to dimerise in the cytosol and undergo nuclear import in complex with histone chaperones. Here, we provide evidence that human H3.1 and H4 are imported into the nucleus as monomers. Using a tether‐and‐release system to study the import dynamics of newly synthesised histones, we find that cytosolic H3.1 and H4 can be maintained as stable monomeric units. Cytosolically tethered histones are bound to importin‐alpha proteins (predominantly IPO4), but not to histone‐specific chaperones NASP, ASF1a, RbAp46 (RBBP7) or HAT1, which reside in the nucleus in interphase cells. Release of monomeric histones from their cytosolic tether results in rapid nuclear translocation, IPO4 dissociation and incorporation into chromatin at sites of replication. Quantitative analysis of histones bound to individual chaperones reveals an excess of H3 specifically associated with sNASP, suggesting that NASP maintains a soluble, monomeric pool of H3 within the nucleus and may act as a nuclear receptor for newly imported histone. In summary, we propose that histones H3 and H4 are rapidly imported as monomeric units, forming heterodimers in the nucleus rather than the cytosol.  相似文献   

7.
The eukaryotic genome is packed into chromatin, which is important for the genomic integrity and gene regulation. Chromatin structures are maintained through assembly and disassembly of nucleosomes catalyzed by histone chaperones. Asf1 (anti-silencing function 1) is a highly conserved histone chaperone that mediates histone transfer on/off DNA and promotes histone H3 lysine 56 acetylation at globular core domain of histone H3. To elucidate the role of Asf1 in the modulation of chromatin structure, we screened and identified small molecules that inhibit Asf1 and H3K56 acetylation without affecting other histone modifications. These pyrimidine-2,4,6-trione derivative molecules inhibited the nucleosome assembly mediated by Asf1 in vitro, and reduced the H3K56 acetylation in HeLa cells. Furthermore, production of HSV viral particles was reduced by these compounds. As Asf1 is implicated in genome integrity, cell proliferation, and cancer, current Asf1 inhibitor molecules may offer an opportunity for the therapeutic development for treatment of diseases. [BMB Reports 2015; 48(12): 685-690]  相似文献   

8.
The anti-silencing function protein 1 (Asf1) is a chaperone that forms a complex with histones H3 and H4 facilitating dimer deposition and removal from chromatin. Most eukaryotes possess two different Asf1 chaperones but their specific functions are still unknown. Trypanosomes, a group of early-diverged eukaryotes, also have two, but more divergent Asf1 paralogs than Asf1 of higher eukaryotes. To unravel possible different functions, we characterized the two Asf1 proteins in Trypanosoma brucei. Asf1A is mainly localized in the cytosol but translocates to the nucleus in S phase. In contrast, Asf1B is predominantly localized in the nucleus, as described for other organisms. Cytosolic Asf1 knockdown results in accumulation of cells in early S phase of the cell cycle, whereas nuclear Asf1 knockdown arrests cells in S/G2 phase. Overexpression of cytosolic Asf1 increases the levels of histone H3 and H4 acetylation. In contrast to cytosolic Asf1, overexpression of nuclear Asf1 causes less pronounced growth defects in parasites exposed to genotoxic agents, prompting a function in chromatin remodeling in response to DNA damage. Only the cytosolic Asf1 interacts with recombinant H3/H4 dimers in vitro. These findings denote the early appearance in evolution of distinguishable functions for the two Asf1 chaperons in trypanosomes.  相似文献   

9.
The orderly deposition of histones onto DNA is mediated by conserved assembly complexes, including chromatin assembly factor-1 (CAF-1) and the Hir proteins . CAF-1 and the Hir proteins operate in distinct but functionally overlapping histone deposition pathways in vivo . The Hir proteins and CAF-1 share a common partner, the highly conserved histone H3/H4 binding protein Asf1, which binds the middle subunit of CAF-1 as well as to Hir proteins . Asf1 binds to newly synthesized histones H3/H4 , and this complex stimulates histone deposition by CAF-1 . In yeast, Asf1 is required for the contribution of the Hir proteins to gene silencing . Here, we demonstrate that Hir1, Hir2, Hir3, and Hpc2 comprise the HIR complex, which copurifies with the histone deposition protein Asf1. Together, the HIR complex and Asf1 deposit histones onto DNA in a replication-independent manner. Histone deposition by the HIR complex and Asf1 is impaired by a mutation in Asf1 that inhibits HIR binding. These data indicate that the HIR complex and Asf1 proteins function together as a conserved eukaryotic pathway for histone replacement throughout the cell cycle.  相似文献   

10.
Ai X  Parthun MR 《Molecular cell》2004,14(2):195-205
The yeast Hat1p/Hat2p type B histone acetyltransferase complex is localized to both the cytoplasm and nucleus. We isolate the nuclear form of the Hat1p/Hat2p complex and find that it copurifies with the product of the uncharacterized open reading frame YLL022C (named Hif1p). The functional significance of the association of Hif1p with the Hat1p/Hat2p complex is confirmed by the observation that hif1Delta and hat1Delta strains display similar defects in telomeric silencing and DNA double-strand break repair. Hif1p is a histone chaperone that selectively interacts with histones H3 and H4. Hif1p is also a chromatin assembly factor, promoting the deposition of histones in the presence of a yeast cytosolic extract. In vivo, the nuclear Hat1p/Hat2p/Hif1p complex is bound to acetylated histone H4, as well as histone H3. The association of Hif1p with acetylated H4 requires Hat1p and Hat2p providing a link between type B histone acetyltransferases and chromatin assembly.  相似文献   

11.
Acetylation of Saccharomyces cerevisiae histone H3 on K56 by the histone acetyltransferase (HAT) Rtt109 is important for repairing replication-associated lesions. Rtt109 purifies from yeast in complex with the histone chaperone Vps75, which stabilizes the HAT in vivo. A whole-genome screen to identify genes whose deletions have synthetic genetic interactions with rtt109Delta suggests Rtt109 has functions in addition to DNA repair. We show that in addition to its known H3-K56 acetylation activity, Rtt109 is also an H3-K9 HAT, and we show that Rtt109 and Gcn5 are the only H3-K9 HATs in vivo. Rtt109's H3-K9 acetylation activity in vitro is enhanced strongly by Vps75. Another histone chaperone, Asf1, and Vps75 are both required for acetylation of lysine 9 on H3 (H3-K9ac) in vivo by Rtt109, whereas H3-K56ac in vivo requires only Asf1. Asf1 also physically interacts with the nuclear Hat1/Hat2/Hif1 complex that acetylates H4-K5 and H4-K12. We suggest Asf1 is capable of assembling into chromatin H3-H4 dimers diacetylated on both H4-K5/12 and H3-K9/56.  相似文献   

12.
13.
Based on their sequences, the Saccharomyces cerevisiae Hpa2 and Hpa3 proteins are annotated as two closely related members of the Gcn5 acetyltransferase family. Here, we describe the biochemical characterization of Hpa2 and Hpa3 as bona fide acetyltransferases with different substrate specificities. Mutational and MALDI-TOF analyses showed that Hpa3 translation initiates primarily from Met-19 rather than the annotated start site, Met-1, with a minor product starting at Met-27. When expressed in Escherichia coli and assayed in vitro, Hpa2 and Hpa3 (from Met-19) acetylated histones and polyamines. Whereas Hpa2 acetylated histones H3 and H4 (at H3 Lys-14, H4 Lys-5, and H4 Lys-12), Hpa3 acetylated only histone H4 (at Lys-8). Additionally, Hpa2, but not Hpa3, acetylated certain small basic proteins. Hpa3, but not Hpa2, has been reported to acetylate d-amino acids, and we present results consistent with that. Overexpression of Hpa2 or Hpa3 is toxic to yeast cells. However, their deletions do not show any standard phenotypic defects. These results suggest that Hpa2 and Hpa3 are similar but distinct acetyltransferases that might have overlapping roles with other known acetyltransferases in vivo in acetylating histones and other small proteins.  相似文献   

14.
Anti-silencing function 1 (Asf1) and Chromatin Assembly Factor 1 (CAF-1) chaperone histones H3/H4 during the assembly of nucleosomes on newly replicated DNA. To understand the mechanism of histone H3/H4 transfer among Asf1, CAF-1 and DNA from a thermodynamic perspective, we developed and employed biophysical approaches using full-length proteins in the budding yeast system. We find that the C-terminal tail of Asf1 enhances the interaction of Asf1 with CAF-1. Surprisingly, although H3/H4 also enhances the interaction of Asf1 with the CAF-1 subunit Cac2, H3/H4 forms a tight complex with CAF-1 exclusive of Asf1, with an affinity weaker than Asf1–H3/H4 or H3/H4–DNA interactions. Unlike Asf1, monomeric CAF-1 binds to multiple H3/H4 dimers, which ultimately promotes the formation of (H3/H4)2 tetramers on DNA. Thus, transition of H3/H4 from the Asf1-associated dimer to the DNA-associated tetramer is promoted by CAF-1-induced H3/H4 oligomerization.  相似文献   

15.
The Hat1 histone acetyltransferase has been implicated in the acetylation of histone H4 during chromatin assembly. In this study, we have characterized the Hat1 complex from the fission yeast Schizosaccharomyces pombe and have examined its role in telomeric silencing. Hat1 is found associated with the RbAp46 homologue Mis16, an essential protein. The Hat1 complex acetylates lysines 5 and 12 of histone H4, the sites that are acetylated in newly synthesized H4 in a wide range of eukaryotes. Deletion of hat1 in S. pombe is itself sufficient to cause the loss of silencing at telomeres. This is in contrast to results obtained with an S. cerevisiae hat1Δ strain, which must also carry mutations of specific acetylatable lysines in the H3 tail domain for loss of telomeric silencing to occur. Notably, deletion of hat1 from S. pombe resulted in an increase of acetylation of histone H4 in subtelomeric chromatin, concomitant with derepression of this region. A similar loss of telomeric silencing was also observed after growing cells in the presence of the deacetylase inhibitor trichostatin A. However, deleting hat1 did not cause loss of silencing at centromeres or the silent mating type locus. These results point to a direct link between Hat1, H4 acetylation, and the establishment of repressed telomeric chromatin in fission yeast.  相似文献   

16.
17.
Poveda A  Sendra R 《The FEBS journal》2008,275(9):2122-2136
Saccharomyces cerevisiae Hat1, together with Hat2 and Hif1, forms the histone acetyltransferase B (HAT-B) complex. Previous studies performed with synthetic N-terminal histone H4 peptides found that whereas the HAT-B complex acetylates only Lys12, recombinant Hat1 is able to modify Lys12 and Lys5. Here we demonstrate that both Lys12 and Lys5 of soluble, non-chromatin-bound histone H4 are in vivo targets of acetylation for the yeast HAT-B enzyme. Moreover, coimmunoprecipitation assays revealed that Lys12/Lys5-acetylated histone H4 is bound to the HAT-B complex in the soluble cell fraction. Both Hat1 and Hat2, but not Hif1, are required for the Lys12/Lys5-specific acetylation and for histone H4 binding. HAT-B-dependent acetylation of histone H4 was detected in the soluble fraction of cells at distinct cell cycle stages, and increased when cells accumulated excess histones. Strikingly, histone H3 was not found in any of the immunoprecipitates obtained with the different components of the HAT-B enzyme, indicating the possibility that histone H3 is not together with histone H4 in this complex. Finally, the exchange of Lys for Arg at position 12 of histone H4 did not interfere with histone H4 association with the complex, but prevented acetylation on Lys5 by the HAT-B enzyme, in vivo as well as in vitro.  相似文献   

18.
19.

Background

Hif1p is an H3/H4-specific histone chaperone that associates with the nuclear form of the Hat1p/Hat2p complex (NuB4 complex) in the yeast Saccharomyces cerevisiae. While not capable of depositing histones onto DNA on its own, Hif1p can act in conjunction with a yeast cytosolic extract to assemble nucleosomes onto a relaxed circular plasmid.

Results

To identify the factor(s) that function with Hif1p to carry out chromatin assembly, multiple steps of column chromatography were carried out to fractionate the yeast cytosolic extract. Analysis of partially purified fractions indicated that Hif1p-dependent chromatin assembly activity resided in RNA rather than protein. Fractionation of isolated RNA indicated that the chromatin assembly activity did not simply purify with bulk RNA. In addition, the RNA-mediated chromatin assembly activity was blocked by mutations in the human homolog of Hif1p, sNASP, that prevent the association of this histone chaperone with histone H3 and H4 without altering its electrostatic properties.

Conclusions

These results suggest that specific RNA species may function in concert with histone chaperones to assemble chromatin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号