首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In all multicellular organisms, germ cells originating from a fertilized egg have the highly specialized role of transmitting genetic information to the next generation. In many animal species, the establishment of the germ cell lineage is regulated by the maternally inherited germplasm. In mammals, however, germline determination is not based on the unequal distribution of maternal determinants. In the processes of mammalian germ cell formation and subsequent differentiation, the molecular basis of the acquisition of germ cell status is not well understood. Since migrating primordial germ cells (PGCs) are lineage-restricted to the germline, they have already acquired a germ cell specific fate distinct from that of pluri/multi-potent stem cells. However, there have been no molecules known to be expressed in migrating PGCs but not in the inner cell mass of blastocysts. Such molecules should be involved in early germ cell development, and they should make good markers for following the process of PGC formation. To identify such molecules, we performed a subtracted cDNA screening with migrating PGCs and blastocysts in mice, and isolated 11 clones preferentially expressed in PGCs. Here, we report the identification of two genes with similarity to human interferon-induced transmembrane protein (Ifitm) genes, and expression patterns of these genes in forming and in differentiating PGCs. During germ cell formation, mouse Ifitm like (mil)-1 was expressed in putative PGC ancestors in embryos at 6.5-7.5 days post coitum. In migrating PGCs, mil-1 expression was continuously observed and mil-2 expression was first detected during germ cell differentiation.  相似文献   

2.
The family of interferon-induced transmembrane protein (Ifitm/mil/fragilis) genes encodes cell surface proteins that may modulate cell adhesion and influence cell differentiation. Mouse Ifitm1 and -3, which are expressed in primordial germ cells (PGCs), are implicated to have roles in germ cell development, but the specific functions have been unclear. Our results show that Ifitm1 activity is required for PGC transit from the mesoderm into the endoderm, and that it appears to act via a repulsive mechanism, such that PGCs avoid Ifitm1-expressing tissues. In contrast, Ifitm3, which is expressed in migratory PGCs, is sufficient to confer autonomous PGC-like homing properties to somatic cells. These guidance activities are mediated by the N-terminal extracellular domain of the specific IFITM, which cannot be substituted by that of another family member. Complex homo- and/or heterotypic intercellular interactions among various IFITMs in PGCs and neighboring cells may underpin coordinated germ cell guidance in mice.  相似文献   

3.
Primordial germ cells (PGCs) sequentially induce specific genes required for their development. We focused on epigenetic changes that regulate PGC-specific gene expression. mil-1, Blimp1, and Stella are preferentially expressed in PGCs, and their expression is upregulated during PGC differentiation. Here, we first determined DNA methylation status of mil-1, Blimp1, and Stella regulatory regions in epiblast and in PGCs, and found that they were hypomethylated in differentiating PGCs after E9.0, in which those genes were highly expressed. We used siRNA to inhibit a maintenance DNA methyltransferase, Dnmt1, in embryonic stem (ES) cells and found that the flanking regions of all three genes became hypomethylated and that expression of each gene increased 1.5- to 3-fold. In addition, we also found 1.5- to 5-fold increase of the PGC genes in the PGCLCs (PGC-like cells) induced form ES cells by knockdown of Dnmt1. We also obtained evidence showing that methylation of the regulatory region of mil-1 resulted in 2.5-fold decrease in expression in a reporter assay. Together, these results suggested that DNA demethylation does not play a major role on initial activation of the PGC genes in the nascent PGCs but contributed to enhancement of their expression in PGCs after E9.0. However, we also found that repression of representative somatic genes, Hoxa1 and Hoxb1, and a tissue-specific gene, Gfap, in PGCs was not dependent on DNA methylation; their flanking regions were hypomethylated, but their expression was not observed in PGCs at E13.5. Their promoter regions showed the bivalent histone modification in PGCs, that may be involved in repression of their expression. Our results indicated that epigenetic status of PGC genes and of somatic genes in PGCs were distinct, and suggested contribution of epigenetic mechanisms in regulation of the expression of a specific gene set in PGCs.  相似文献   

4.
In order to sustain lifelong production of gametes, many animals have evolved a stem cell–based gametogenic program. In the Drosophila ovary, germline stem cells (GSCs) arise from a pool of primordial germ cells (PGCs) that remain undifferentiated even after gametogenesis has initiated. The decision of PGCs to differentiate or remain undifferentiated is regulated by somatic stromal cells: specifically, epidermal growth factor receptor (EGFR) signaling activated in the stromal cells determines the fraction of germ cells that remain undifferentiated by shaping a Decapentaplegic (Dpp) gradient that represses PGC differentiation. However, little is known about the contribution of germ cells to this process. Here we show that a novel germline factor, Gone early (Goe), limits the fraction of PGCs that initiate gametogenesis. goe encodes a non-peptidase homologue of the Neprilysin family metalloendopeptidases. At the onset of gametogenesis, Goe was localized on the germ cell membrane in the ovary, suggesting that it functions in a peptidase-independent manner in cell–cell communication at the cell surface. Overexpression of Goe in the germline decreased the number of PGCs that enter the gametogenic pathway, thereby increasing the proportion of undifferentiated PGCs. Inversely, depletion of Goe increased the number of PGCs initiating differentiation. Excess PGC differentiation in the goe mutant was augmented by halving the dose of argos, a somatically expressed inhibitor of EGFR signaling. This increase in PGC differentiation resulted in a massive decrease in the number of undifferentiated PGCs, and ultimately led to insufficient formation of GSCs. Thus, acting cooperatively with a somatic regulator of EGFR signaling, the germline factor goe plays a critical role in securing the proper size of the GSC precursor pool. Because goe can suppress EGFR signaling activity and is expressed in EGF-producing cells in various tissues, goe may function by attenuating EGFR signaling, and thereby affecting the stromal environment.  相似文献   

5.
Primordial germ cell (PGC) formation is pivotal for fertility. Mammalian PGCs are epigenetically induced without the need for maternal factors and can also be derived in culture from pluripotent stem cells. In egg-laying animals such as Drosophila and zebrafish, PGCs are specified by maternal germ plasm factors without the need for inducing factors. In these organisms, PGC formation and cultivation in vitro from indeterminate embryonic cells have not been possible. Here, we report PGC formation and cultivation in vitro from blastomeres dissociated from midblastula embryos (MBEs) of the fish medaka (Oryzias latipes). PGCs were identified by using germ-cell-specific green fluorescent protein (GFP) expression from a transgene under the control of the vasa promoter. Embryo perturbation was exploited to study PGC formation in vivo, and dissociated MBE cells were cultivated under various conditions to study PGC formation in vitro. Perturbation of somatic development did not prevent PGC formation in live embryos. Dissociated MBE blastomeres formed PGCs in the absence of normal somatic structures and of known inducing factors. Most importantly, under culture conditions conducive to stem cell derivation, some dissociated MBE blastomeres produced GFP-positive PGC-like cells. These GFP-positive cells contained genuine PGCs, as they expressed PGC markers and migrated into the embryonic gonad to generate germline chimeras. Our data thus provide evidence for PGC preformation in medaka and demonstrate, for the first time, that PGC formation and derivation can be obtained in culture from early embryos of medaka as a lower vertebrate model.  相似文献   

6.
Xdazl is an RNA component of Xenopus germ plasm and encodes an RNA-binding protein that can act as a functional homologue of Drosophila boule. boule is required for entry into meiotic cell division during fly spermatogenesis. Both Xdazl and boule are related to the human DAZ and DAZL, and murine Dazl genes, which are also involved in gamete differentiation. As suggested from its germ plasm localization, we show here that Xdazl is critically involved in PGC development in Xenopus. Xdazl protein is expressed in the cytoplasm, specifically in the germ plasm, from blastula to early tailbud stages. Specific depletion of maternal Xdazl RNA results in tadpoles lacking, or severely deficient in, primordial germ cells (PGCs). In the absence of Xdazl, PGCs do not successfully migrate from the ventral to the dorsal endoderm and do not reach the dorsal mesentery. Germ plasm aggregation and intracellular movements are normal indicating that the defect occurs after PGC formation. We propose that Xdazl is required for early PGC differentiation and is indirectly necessary for the migration of PGCs through the endoderm. As an RNA-binding protein, Xdazl may regulate translation or expression of factors that mediate migration of PGCs.  相似文献   

7.
8.
Nuclear transfer embryonic stem cells (ntESCs) show stem cell characteristics such as pluripotency but cause no immunological disorders. Although ntESCs are able to differentiate into somatic cells, the ability of ntESCs to differentiate into primordial germ cells (PGCs) has not been examined. In this work, we examined the capacity of mouse ntESCs to differentiate into PGCs in vitro. ntESCs aggregated to form embryoid bodies (EB) in EB culture medium supplemented with bone morphogenetic protein 4(BMP4) as the differentiation factor. The expression level of specific PGC genes was compared at days 4 and 8 using real time PCR. Flow cytometry and immunocytochemical staining were used to detect Mvh as a specific PGC marker. ntESCs expressed particular genes related to different stages of PGC development. Flow cytometry and immunocytochemical staining confirmed the presence of Mvh protein in a small number of cells. There were significant differences between cells that differentiated into PGCs in the group treated with Bmp4 compared to non-treated cells. These findings indicate that ntESCs can differentiate into putative PGCs. Improvement of ntESC differentiation into PGCs may be a reliable means of producing mature germ cells.  相似文献   

9.
The family of interferon-inducible transmembrane proteins (Ifitm) consists of five highly sequence-related cell surface proteins, which are implicated in diverse cellular processes. Ifitm genes are conserved, widely expressed, and characteristically found in genomic clusters, such as the 67-kb Ifitm family locus on mouse chromosome 7. Recently, Ifitm1 and Ifitm3 have been suggested to mediate migration of early primordial germ cells (PGCs), a process that is little understood. To investigate Ifitm function during germ cell development, we used targeted chromosome engineering to generate mutants which either lack the entire Ifitm locus or carry a disrupted Ifitm3 gene only. Here we show that the mutations have no detectable effects on development of the germ line or on the generation of live young. Hence, contrary to previous reports, Ifitm genes are not essential for PGC migration. The Ifitm family is a striking example of a conserved gene cluster which appears to be functionally redundant during development.  相似文献   

10.
11.
nanos1 is required to maintain oocyte production in adult zebrafish   总被引:1,自引:0,他引:1  
Development of the germline requires the specification and survival of primordial germ cells (PGCs) in the embryo as well as the maintenance of gamete production during the reproductive life of the adult. These processes appear to be fundamental to all Metazoans, and some components of the genetic pathway regulating germ cell development and function are evolutionarily conserved. In both vertebrates and invertebrates, nanos-related genes, which encode RNA-binding zinc finger proteins, have been shown to play essential and conserved roles during germ cell formation. In Drosophila, maternally supplied nanos is required for survival of PGCs in the embryo, while in adults, nanos is required for the continued production of oocytes by maintaining germline stem cells self-renewal. In mice and zebrafish, nanos orthologs are required for PGC survival during embryogenesis, but a role in adults has not been explored. We show here that nanos1 in zebrafish is expressed in early stage oocytes in the adult female germline. We have identified a mutation in nanos1 using a reverse genetics method and show that young female nanos mutants contain oocytes, but fail to maintain oocyte production. This progressive loss of fertility in homozygous females is not a phenotype that has been described previously in the zebrafish and underlines the value of a reverse genetics approach in this model system.  相似文献   

12.
In Drosophila, the posterior determinant nanos is required for embryonic patterning and for primordial germ cell (PGC) development. We have identified three genes in Caenorhabditis elegans that contain a putative zinc-binding domain similar to the one found in nanos, and show that two of these genes function during PGC development. Like Drosophila nanos, C. elegans nos-1 and nos-2 are not generally required for PGC fate specification, but instead regulate specific aspects of PGC development. nos-2 is expressed in PGCs around the time of gastrulation from a maternal RNA associated with P granules, and is required for the efficient incorporation of PGCs into the somatic gonad. nos-1 is expressed in PGCs after gastrulation, and is required redundantly with nos-2 to prevent PGCs from dividing in starved animals and to maintain germ cell viability during larval development. In the absence of nos-1 and nos-2, germ cells cease proliferation at the end of the second larval stage, and die in a manner that is partially dependent on the apoptosis gene ced-4. Our results also indicate that putative RNA-binding proteins related to Drosophila Pumilio are required for the same PGC processes as nos-1 and nos-2. These studies demonstrate that evolutionarily distant organisms utilize conserved factors to regulate early germ cell development and survival, and that these factors include members of the nanos and pumilio gene families.  相似文献   

13.
During germ cell differentiation in mice, the genome undergoes specific epigenetic modifications. These include demethylation of imprinted genes and subsequent establishment of parental allele-specific methylation. The mouse Igf2r gene is an imprinted gene that shows maternal-specific expression. Maternal-specific methylation of differentially methylated region 2 (DMR2) of this gene may be necessary for its maternal-specific expression. Before the allele-specific methylation is established, DMR2 is demethylated in both male and female primordial germ cells (PGCs) by 13.5 days post coitum (dpc), indicating that the demethylation of this region occurs earlier in PGC development. The timing of the demethylation has been, however, unknown. In this study, we attempted to determine the timing of methylation erasure of Igf2r DMR2 in developing PGCs, using transgenic mice expressing green fluorescent protein specifically in the germ line. We purified migrating PGCs from the transgenic mice and examined the methylation status of DMR2. The results show that some CpG sites within DMR2 start demethylation at 9.5 dpc in some migrating PGCs, before the cells colonize genital ridges, and the progression of demethylation is rapid after colonization of the genital ridges. To examine whether the gonadal environment is involved in demethylation, we analyzed the methylation of DMR2 after culturing migrating PGCs in the absence of a gonadal environment. These culture experiments support the idea that a gonadal environment is not required for demethylation of the region in at least a fraction of PGCs.  相似文献   

14.
In most animals, primordial germ cell (PGC) specification and development depend on maternally provided cytoplasmic determinants that constitute the so-called germ plasm. Little is known about the role of germ plasm in vertebrate germ cell development, and its molecular mode of action remains elusive. While PGC specification in mammals occurs via different mechanisms, several germ plasm components required for early PGC development in lower organisms are expressed in mammalian germ cells after their migration to the gonad and are involved in gametogenesis. Here we show that the RNA of dead end, encoding a novel putative RNA binding protein, is a component of the germ plasm in zebrafish and is specifically expressed in PGCs throughout embryogenesis; Dead End protein is localized to perinuclear germ granules within PGCs. Knockdown of dead end blocks confinement of PGCs to the deep blastoderm shortly after their specification and results in failure of PGCs to exhibit motile behavior and to actively migrate thereafter. PGCs subsequently die, while somatic development is not effected. We have identified dead end orthologs in other vertebrates including Xenopus, mouse, and chick, where they are expressed in germ plasm and germ-line cells, suggesting a role in germ-line development in these organisms as well.  相似文献   

15.
Inheritance (sequestration of a localized determinant: germplasm) and zygotic induction are two modes of metazoan primordial germ cell (PGC) specification. vasa and nanos homologs are evolutionarily conserved germline marker genes that have been used to examine the ontogeny of germ cells in various animals. In the lepidopteran insect Bombyx mori, although the lack of vasa homolog (BmVLG) protein localization as well as microscopic observation suggested the lack of germplasm, classical embryo manipulation studies and the localization pattern of Bm-nosO (one of the four nanos genes in Bombyx) maternal mRNA in the egg raised the possibility that an inheritance mode is operating in Bombyx. Here, we generated Bm-nosO knockouts to examine whether the localized mRNA acts as a localized germ cell determinant. Contrary to our expectations, Bm-nosO knockout lines could be established. However, these lines frequently produced abnormal eggs, which failed to hatch, to various extent depending on the individuals. We also found that Bm-nosO positively regulated BmVLG expression at least during embryonic stage, directly or indirectly, indicating that these genes were on the same developmental pathway for germ cell formation in Bombyx. These results suggest that these conserved genes are concerned with stable germ cell production. On the other hand, from the aspect of BmVLG as a PGC marker, we showed that maternal Bm-nosO product(s) as well as early zygotic Bm-nosO activity were redundantly involved in PGC specification; elimination of both maternal and zygotic gene activities (as in knockout lines) resulted in the apparent lack of PGCs, indicating that an inheritance mechanism indeed operates in Bombyx. This, however, together with the fact that germ cells are produced at all in Bm-nosO knockout lines, also suggests the possibility that, in Bombyx, not only this inheritance mechanism but also an inductive mechanism acts in concert to form germ cells or that loss of early PGCs are compensated for by germline regeneration: mechanisms that could enable the evolution of preformation. Thus, Bombyx could serve as an important organism in understanding the evolution of germ cell formation mechanisms; transition between preformation and inductive modes.  相似文献   

16.
Germ cells possess the unique ability to acquire totipotency during development in vivo as well as give rise to pluripotent stem cells under the appropriate conditions in vitro. Recent studies in which somatic cells were experimentally converted into pluripotent stem cells revealed that genes expressed in primordial germ cells (PGCs), such as Oct3/4, Sox2, and Lin28, are involved in this reprogramming. These findings suggest that PGCs may be useful for identifying factors that successfully and efficiently reprogram somatic cells into toti- and/or pluripotent stem cells. Here, we show that Blimp-1, Prdm14, and Prmt5, each of which is crucial for PGC development, have the potential to reprogram somatic cells into pluripotent stem cells. Among them, Prmt5 exhibited remarkable reprogramming of mouse embryonic fibroblasts into which Prmt5, Klf4, and Oct3/4 were introduced. The resulting cells exhibited pluripotent gene expression, teratoma formation, and germline transmission in chimeric mice, all of which were indistinguishable from those induced with embryonic stem cells. These data indicate that some of the factors that play essential roles in germ cell development are also active in somatic cell reprogramming.  相似文献   

17.
Primordial germ cells (PGCs) are germ cell precursors that are committed to sperm or oocytes. Dramatic proliferation during PGC development determines the number of founder spermatogonia and oocytes. Although specified to a germ lineage, PGCs produce pluripotent embryonic germ (EG) cells in vitro and testicular teratomas in vivo. Wnt/beta-catenin signaling regulates pluripotency and differentiation in various stem cell systems, and dysregulation of this signaling causes various human cancers. Here, we examined the role of Wnt/beta-catenin signaling in PGC development. In normal PGC development, Wnt/beta-catenin signaling is suppressed by the GSK3beta-mediated active degradation of beta-catenin and the low expression of canonical Wnt molecules. The effects of aberrant activation of Wnt/beta-catenin signaling in PGCs were analyzed using mice carrying a deletion of the exon that encodes the GSK3beta phosphorylation sites in the beta-catenin locus. Despite the potential activity of Wnt/beta-catenin signaling in stem cell maintenance and carcinogenesis in various cell lineages, teratomas were not induced in the mice expressing the nuclear-localized beta-catenin in PGCs. Instead, the mutant mice showed germ cell deficiency caused by the delayed cell cycle progression of the proliferative phase PGCs. Our results show that the suppression of Wnt/beta-catenin signaling is a prerequisite for the normal development of PGCs.  相似文献   

18.
Cell death in the germ line is controlled by both positive and negative mechanisms that maintain the appropriate number of germ cells and that prevent the possible formation of germ cell tumors. In the mouse embryo, Steel/c-Kit signaling is required to prevent migrating primordial germ cells (PGCs) from undergoing Bax-dependent apoptosis. In our current study, we show that migrating PGCs also undergo apoptosis in Nanos3-null embryos. We assessed whether the Bax-dependent apoptotic pathway is responsible for this cell death by knocking out the Bax gene together with the Nanos3 gene. Differing from Steel-null embryos, however, the Bax elimination did not completely rescue PGC apoptosis in Nanos3-null embryos, and only a portion of the PGCs survived in the double knockout embryo. We further established a mouse line, Nanos3-Cre-pA, to undertake lineage analysis and our results indicate that most of the Nanos3-null PGCs die rather than differentiate into somatic cells, irrespective of the presence or absence of Bax. In addition, a small number of surviving PGCs in Nanos3/Bax-null mice are maintained and differentiate as male and female germ cells in the adult gonads. Our findings thus suggest that heterogeneity exists in the PGC populations and that Nanos3 maintains the germ cell lineage by suppressing both Bax-dependent and Bax-independent apoptotic pathways.  相似文献   

19.
Nanog expression in mouse germ cell development   总被引:12,自引:0,他引:12  
  相似文献   

20.
Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were cultured on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号