首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the existence of an endogenous system for lactate transport in Xenopus laevis oocytes. (36)Cl-uptake studies excluded the involvement of a DIDS-sensitive anion antiporter as a possible pathway for lactate movement. L-[(14)C]lactate uptake was unaffected by superimposed pH gradients, stimulated by the presence of Na(+) in the incubating solution, and severely reduced by the monocarboxylate transporter inhibitor p-chloromercuribenzenesulphonate (pCMBS). Transport exhibited a broad cation specificity and was cis inhibited by other monocarboxylates, mostly by pyruvate. These results suggest that lactate uptake is mediated mainly by a transporter and that the preferred anion is pyruvate. [(14)C]pyruvate uptake exhibited the same pattern of functional properties evidenced for L-lactate. Kinetic parameters were calculated for both monocarboxylates, and a higher affinity for pyruvate was revealed. Various inhibitors of monocarboxylate transporters reduced significantly pyruvate uptake. These studies demonstrate that Xenopus laevis oocytes possess a monocarboxylate transport system that shares some functional features with the members of the mammalian monocarboxylate cotransporters family, but, in the meanwhile, exhibits some particular properties, mainly concerning cation specificity.  相似文献   

2.
A range of short-chain aliphatic monocarboxylates, both unsubstituted and substituted with hydroxy, chloro and keto groups, were shown to inhibit transport of L-lactate and pyruvate into both guinea-pig cardiac myocytes and rat erythrocytes. The carrier of heart cells exhibited a higher affinity (approx. 10-fold) for most of the monocarboxylates than did the erythrocyte carrier. A notable exception was L-lactate, whose Km for both carriers was similar. The K1 values of the two carriers for inhibitors such as phenylpyruvate and alpha-cyanocinnamate derivatives were also different. The high affinity of the heart cell carrier for ketone bodies and acetate may be physiologically important, since these substrates are used as fuels by the heart.  相似文献   

3.
Monocarboxylate transporters (MCTs) are proton-linked membrane carriers involved in the transport of monocarboxylates such as lactate, pyruvate, as well as ketone bodies. They belong to a larger family of transporters composed of 14 members in mammals based on sequence homologies. MCTs are found in various tissues including the brain where three isoforms, MCT1, MCT2 and MCT4, have been described. Each of these isoforms exhibits a distinct regional and cellular distribution in rodent brain. At the cellular level, MCT1 is expressed by endothelial cells of microvessels, by ependymocytes as well as by astrocytes. MCT4 expression appears to be specific for astrocytes. By contrast, the predominant neuronal monocarboxylate transporter is MCT2. Interestingly, part of MCT2 immunoreactivity is located at postsynaptic sites, suggesting a particular role of monocarboxylates and their transporters in synaptic transmission. In addition to variation in expression during development and upon nutritional modifications, new data indicate that MCT expression is regulated at the translational level by neurotransmitters. Understanding how transport of monocarboxylates is regulated could be of particular importance not only for neuroenergetics but also for areas such as functional brain imaging, regulation of food intake and glucose homeostasis, or for central nervous system disorders such as ischaemia and neurodegenerative diseases.  相似文献   

4.
The effects of exchangeable ions and pH on the efflux of pyruvate from preloaded mitochondria are reported. Efflux obeys first-order kinetics, and the stimulation of efflux by exchangeable ions such as acetoacetate and lactate obeys Michaelis--Menten kinetics. The apparent Km value +/- S.E. for acetoacetate was 0.56 +/- 0.14 mM (n = 5) and that for lactate 12.3 +/- 2.3 mM (n = 6). The Vmax. values +/- S.E. at 0 degrees C were 16.2 +/- 2.0 and 21.9 +/- 2.7 nmol/min per mg of protein. The exchange of a variety of other substituted monocarboxylates was also studied. Efflux was also stimulated by increasing the external pH. The data gave a pK for the transport process of 8.35 and a Vmax. of 3.31 +/- 0.14 nmol/min per mg. The similarity of the Vmax. values for various exchangeable ions but the difference of this from the Vmax. in the absence of exchangeable ions may indicate that transport of pyruvate occurs with H+ and not in exchange for an OH- ion. The inhibition of transport by alpha-cyano-4-hydroxycinnamate took several seconds to reach completion at 0 degrees C. It is proposed that inhibition occurs by binding to the substrate site and subsequent reaction with an -SH group on the inside of the membrane. The inhibitor can be displaced by substrates that can also enter the mitochondria independently of the carrier and so compete with the inhibitor for the substrate-binding site on the inside of the membrane. A mechanism for transport is proposed that invokes a transition state of pyruvate involving addition of an -SH group to the 2-carbon of pyruvate. Evidence is presented that suggests that ketone bodies may cross the mitochondrial membrane either on the carrier or by free diffusion. The physiological involvement of the carrier in ketone-body metabolism is discussed. The role of ketone bodies and pH in the physiological regulation of pyruvate transport is considered.  相似文献   

5.
1. N-Phenylmaleimide irreversibly inhibits pyruvate transport into rat heart and liver mitochondria to a much greater extent than does N-ethylmaleimide, iodoacetate or bromopyruvate. alpha-Cyanocinnamate protects the pyruvate transporter from attack by this thiol-blocking reagent. 2. In both heart and liver mitochondria alpha-cyanocinnamate diminishes labelling by [3H]N-phenylmaleimide of a membrane protein of subunit mol.wt. 15000 on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 3. Exposure of mitochondrial to unlabelled N-phenylmaleimide in the presence of alpha-cyanocinnamate, followed by removal of alpha-cyanocinnamate and exposure to [3H]N-phenylmaleimide, produced specific labelling of the same protein. 4. Both labelling and kinetic experiments with inhibitors gave values for the approximate amount of carrier present in liver and heart mitochondria of 100 and 450 pmol/mg of mitochondrial protein respectively. 5. The turnover numbers for net pyruvate transport and pyruvate exchange at 0 degrees C were 6 and 200 min-1 respectively.  相似文献   

6.
Cardiac mitochondria were isolated from Bufo marinus and Rana catesbeiana, two species of amphibian whose cardiovascular systems are adapted to either predominantly aerobic or glycolytic modes of locomotion. Mitochondrial oxidative capacity was compared using VO2 max and respiratory control ratios in the presence of a variety of substrates including pyruvate, lactate, oxaloacetate, beta-hydroxybutyrate, and octanoyl-carnitine. B. marinus cardiac mitochondria exhibited VO2 max values twice that of R. catesbeiana cardiac mitochondria when oxidizing carbohydrate substrates. Pyruvate transport was measured via a radiolabeled-tracer assay in isolated B. marinus and R. catesbeiana cardiac mitochondria. Time-course experiments described both alpha-cyano-4-hydroxycinnamate-sensitive (MCT-like) and phenylsuccinate-sensitive pyruvate uptake mechanisms in both species. Pyruvate uptake by the MCT-like transporter was enhanced in the presence of a pH gradient, whereas the phenylsuccinate-sensitive transporter was inhibited. Notably, anuran cardiac mitochondria exhibited activities of lactate dehydrogenase and pyruvate carboxylase. The presence of both transporters on the inner mitochondrial membrane affords the net uptake of monocarboxylates including pyruvate, beta-hydroxybutyrate, and lactate; the latter potentially indicating the presence of a lactate/pyruvate shuttle allowing oxidation of extramitochondrial NADH. Intramitochondrial lactate dehydrogenase and pyruvate carboxylase enables lactate to be oxidized to pyruvate or converted to anaplerotic oxaloacetate. Kinetics of the MCT-like transporter differed significantly between the two species, suggesting differences in aerobic scope may be in part attributable to differences in mitochondrial carbohydrate utilization.  相似文献   

7.
1. The translocation of monovalent organic anions (pyruvate, propionate, acetate and butyrate) across the cell membrane of isolated epithelial cells from rat small intestine was studied by measuring competitive inhibition kinetics, exchange diffusion and temperature dependence of the efflux rate. A possible function of a monocarboxylate carrier in intestine will be discussed. 2. Earlier studies on the inhibition of pyruvate transport of fatty acids were extended to propionate and found to show the same characteristics. The kinetics, however, appeared to be more complex by the contribution of several diffusion pathways for propionate. 3. The mechanism of countertransport was most compatible with an "accelerated exchange diffusion" and could be studied at both sides of the membrane. This exchange diffusion exhibited saturation kinetics. It is proposed that different monocarboxylate anions may have different affinities for a common carrier. 4. Temperature dependence of the efflux of pyruvate and propionate was studied. Arrhenius plots obtained were not found to be linear between 0 and 5 degrees C. Between 5 and 15 degrees C activation energies for pyruvate and propionate efflux rates were found to be 19.6 and 12.6 kcal/mol, respectively.  相似文献   

8.
A study of the transport of pyruvate in heart mitochondria from normal and hypothyroid rats has been carried out. Heart mitochondria from hypothyroid rats translocate pyruvate via the alpha-cyanocinnamate sensitive carrier much more slowly than do mitochondria from normal rats. Kinetic analysis of the pyruvate transport shows that the Vmax of this process is decreased while there is practically no change in the Km values. Neither a decrease in the transmembrane delta pH value nor a decrease in the total number of the pyruvate carrier molecules, titrated with labeled alpha-cyanocinnamate, account for the decreased rate of pyruvate transport. The lower activity of the pyruvate translocator in mitochondria from hypothyroid rats is associated with a parallel decrease of the rate of pyruvate supported oxygen uptake. There is, however, no difference in either the respiratory control ratios or in the ADP/O ratios between these two types of mitochondria. The heart mitochondrial lipid composition is significantly altered in hypothyroid rats. Cardiolipin, particularly, was found to decrease by around 36%. In addition the pattern of fatty acids was found to be altered in mitochondrial membranes from hypothyroid rats. It is suggested that the decreased activity of the pyruvate translocator in heart mitochondria from hypothyroid rats can be ascribed to changes in the lipid environment which surrounds the pyruvate carrier molecule in the mitochondrial membrane.  相似文献   

9.
The mechanisms of lactate and pyruvate transport across the plasma membrane of rat skeletal muscle under various pH and ionic conditions were studied in skeletal muscle sarcolemmal (SL) membrane vesicles purified from 22 female Sprague-Dawley rats. Transport by SL vesicles was measured as uptake of L(+)-[U-14C] lactate and [U-14C] pyruvate. Lactate (La-) transport is pH-sensitive; stimulations to fivefold overshoot above equilibrium values were observed both directly by a proton gradient directed inward, and indirectly by a monensin- or nigericin-stimulated exchange of Na+ or K+ for H+ across the SL. Isotopic pyruvate could utilize the transporter, and demonstrated pH gradient-stimulated overshoot and cis-inhibition characteristics similar to those of lactate. Overshoot kinetics were also demonstrated by pH gradient formed by manipulation of external media at pH 5.9, 6.6, and 7.4 and intravesicular media at 6.6, 7.4, and 8.0, respectively. Carbonyl cyanide m-chlorophenylhydrazone, an H+ ionophore, was used as a "pH clamp" to return all stimulated uptake courses back to equilibrium values. Lactate uptake was depressed when internal pH was lower than external pH. These data strongly suggest that La- and H+ are either cotransported by the carrier, or transported as the undissociated HLa, and can account for the majority of the lactate uptake at pH 7.4. The mechanism does not require cotransport of either K+ or Na+. However, an inwardly directed Na+ gradient without ionophore in the absence of a pH gradient doubled La- transport; treatment with amiloride, an inhibitor of the Na+/H+ exchanger, abolished this stimulation, suggesting that this transporter may be an important coregulator of intracellular pH, and could disrupt 1:1 H+ and La- efflux stoichiometry in vivo. We conclude that the majority of La- crosses the skeletal muscle SL by a specific carrier-mediated process that is saturable at high La- concentrations, but flux is passively augmented at low intracellular pH by undissociated lactic acid. In addition, a Na+/H+ exchange mechanism was confirmed in skeletal muscle SL, does affect both lactate and proton flux, and is potentially an important coregulator of intracellular pH and thus, cellular metabolism.  相似文献   

10.
1. Studies on the kinetics of pyruvate transport into mitochondria by an 'inhibitor-stop' technique were hampered by the decarboxylation of pyruvate by mitochondria even in the presence of rotenone. Decarboxylation was minimal at 6 degrees C. At this temperature the Km for pyruvate was 0.15 mM and Vmax. was 0.54nmol/min per mg of protein; alpha-cyano-4-hydroxycinnamate was found to be a non-competitive inhibitor, Ki 6.3 muM, and phenyl-pyruvate a competitive inhibitor, Ki 1.8 mM. 2. At 100 muM concentration, alpha-cyano-4-hydroxycinnamate rapidly and almost totally inhibited O2 uptake by rat heart mitochondria oxidizing pyruvate. Inhibition could be detected at concentrations of inhibitor as low as 1 muM although inhibition took time to develop at this concentration. Inhibition could be reversed by diluting out the inhibitor. 3. Various analogues of alpha-cyano-4-hydroxycinnamate were tested on rat liver and heart mitochondria. The important structural features appeared to be the alpha-cyanopropenoate group and the hydrophobic aromatic side chain. Alpha-Cyanocinnamate, alpha-cyano-5-phenyl-2,4-pentadienoate and compound UK 5099 [alpha-cyano-beta-(2-phenylindol-3-yl)acrylate] were all more powerful inhibitors than alpha-cyano-4-hydroxycinnamate showing 50% inhibition of pyruvate-dependent O2 consumption by rat heart mitochondria at concentrations of 200, 200 and 50 nM respectively. 4. The specificity of the carrier for its substrate was studied by both influx and efflux experiments. Oxamate, 2-oxobutyrate, phenylpyruvate, 2-oxo-4-methyl-pentanoate, chloroacetate, dichloroacetate, difluoroacetate, 2-chloropropionate, 3-chloropropionate and 2,2-dichloropropionate all exchanged with pyruvate, whereas acetate, lactate and trichloroacetate did not. 5. Pyruvate entry into the mitochondria was shown to be accompanied by the transport of a proton (or by exchange with an OH-ion). This proton flux was inhibited by alpha-cyano-4-hydroxycinnamate and allowed measurements of pyruvate transport at higher temperatures to be made. The activation energy of mitochondrial pyruvate transport was found to be 113 kJ (27 kcal)/mol and by extrapolation the rate of transport of pyruvate at 37 degrees C to be 42 nmol/min per mg of protein. The possibility that pyruvate transport into mitochondria may be rate limiting and involved in the regulation of gluconegenesis is discussed. 6. The transport of various monocarboxylic acids into mitochondria was studied by monitoring proton influx. The transport of dichloroacetate, difluoroacetate and oxamate appeared to be largely dependent on the pyruvate carrier and could be inhibited by pyruvate-transport inhibitors. However, many other halogenated and 2-oxo acids which could exchange with pyruvate on the carrier entered freely even in the presence of inhibitor.  相似文献   

11.
The presence of glycolytic enzymes and a GLUT-1-type glucose transporter in rod and cone outer segments was determined by enzyme activity assays, glucose uptake measurements, Western blotting, and immunofluorescence microscopy. Enzyme activities of six glycolytic enzymes including hexokinase, phosphofructokinase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, pyruvate kinase, and lactate dehydrogenase, were found to be present in purified rod outer segment (ROS) preparations. Immunofluorescence microscopy of bovine and chicken retina sections labeled with monoclonal antibodies against glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and lactate dehydrogenase have confirmed that these enzymes are present in rod and cone outer segments and not simply contaminants from the inner segments or other cells. Rod outer segments were also found to contain glucose transport activity as detected by 3-O-[14C]methylglucose uptake and exchange. The glucose transporter had a Km of 6.3 mM and a Vmax of 0.15 nmol of 3-O-methylglucose/s/mg of ROS membrane protein for net uptake and a Km of 29 mM and a Vmax of 1.06 nmol of 3-O-methylglucose/s/mg of ROS membrane protein for equilibrium exchange. These Km values for net uptake and equilibrium exchange are similar to values obtained for human red blood cells and are characteristic of GLUT-1-type glucose transporter. The transport was inhibited by both cytochalasin B and phloretin. Western blot analysis and immunofluorescence microscopy using type-specific glucose transporter antibodies indicated that both rod and cone outer segment plasma membranes have a GLUT-1 glucose transporter of Mr 45K as found in red blood cells and brain microsomal membranes. Solid-phase radioimmune competitive inhibition studies indicated that rod outer segment plasma membranes contained 15% the number of glucose transporters found in human red blood cell membranes and had an estimated density of 400 glucose transporter per micron2 of plasma membrane. These studies support the view that outer segments can generate energy in the form of ATP and GTP by anaerobic glycolysis to supply at least some of the energy requirements for phototransduction and other metabolic processes.  相似文献   

12.
Transport of lactate, pyruvate, and other monocarboxylates across the sarcolemma of skeletal and cardiac myocytes occurs via passive diffusion and by monocarboxylate transporter (MCT) mediated transport. The flux of lactate and protons through the MCT plays an important role in muscle energy metabolism during rest and exercise and in pH regulation during exercise. The MCT isoforms 1 and 4 are the major isoforms of this transporter in skeletal and cardiac muscle. The current consensus on the mechanism of these transporters, based on experimental measurements of labeled lactate fluxes, is that monocarboxylate-proton symport occurs via a rapid-equilibrium ordered mechanism with proton binding followed by monocarboxylate binding. This study tests ordered and random mechanisms by fitting experimental measurements of tracer exchange fluxes from MCT1 and MCT4 isoforms to theoretical predictions derived using relationships between one-way fluxes and thermodynamic forces. Analysis shows that: 1), the available kinetic data are insufficient to distinguish between a rapid-equilibrium ordered and a rapid-equilibrium random-binding model for MCT4; 2), MCT1 has a higher affinity to lactate than does MCT4; 3), the theoretical conditions for the so-called trans-acceleration phenomenon (e.g., increased tracer efflux from a vesicle caused by increased substrate concentration outside the vesicle) do not necessarily require the rate constant for the lactate and proton bound transporter to reorient across the membrane to be higher than that for the unbound transporter; and finally, 4), based on model analysis, additional experiments are proposed to be able to distinguish between ordered and random-binding mechanisms.  相似文献   

13.
Summary The substrate and inhibitor specificity of the lactic acid (Lac) transport system of human neutrophils was investigated. The ability of a variety of compounds to inhibit the influx of [14C]lactate, presumably reflecting competition by substrate analogues for binding at the external translocation site, was taken as an index of affinity for the Lac carrier. pH-stat techniques were utilized to assess transportability. Results indicate a relatively low order of selectivity, the neutrophil H+ + lactate cotransport system demonstrating a broad acceptance of short-chain unsubstituted and substituted alkyl monocarboxylates as well as aromatic monocarboxylates. There was a slight preference for oxo, Cl, and OH substituents over other groups at the two-position of short chain alkyl fatty acids: all were readily transported across the plasma membrane at rates approaching that ofl-lactate itself. Aromatic acids were not transported inward by the carrier although these compounds did permeate via simple nonionic diffusion. The neutrophil Lac carrier can be blocked by a number of cyanocinnamate derivatives, the classical inhibitors of monocarboxylate transport in mitochondria, and by dithiol compounds and sulfhydryl-reactive agents. This constellation of biochemical properties is similar to the features that characterize other well described H+ + lactate cotransport systems in red blood cells, Ehrlich ascites tumor cells, hepatocytes, and cardiac sarcolemmal vesicles, although significant differences exist when comparisons are made to the Na+-dependent lactate transporter of the kidney proximal tubule.  相似文献   

14.
1. Various methods to measure the rate of accumulation of [3-14C]pyruvate in the sucrose-impermeable space of isolated rat liver mitochondria are tested and compared with respect to their ability to distinguish between carrier-linked pyruvate transport and non-carrier-linked processes (adsorption and diffusion). 2. Evidence is presented that the cinnamic acid derivatives commonly used as specific inhibitors of the pyruvate carrier (i) do not completely abolish all carrier-mediated pyruvate transport; (ii) inhibit pyruvate adsorption, and (iii) at higher concentrations lead to a removal of previously accumulated pyruvate from the mitochondria. It is concluded that procedures which avoid the use of transport inhibitors allow more reliable estimates of carrier-linked pyruvate transport. 3. It is proposed to measure pyruvate adsorption as the accumulation of pyruvate in the presence of an uncoupler. Using this procedure, it could be shown that, with 1 mM pyruvate, adsorption represents only a small part of the total pyruvate accumulation, the main part being carrier-linked transport driven by the pH gradient across the mitochondrial inner membrane.  相似文献   

15.
Transport of sialic acid through the lysosomal membrane is defective in the human sialic acid storage disease. The mammalian sialic acid carrier has a wide substrate specificity for acidic monosaccharides. Recently, we showed that also non-sugar monocarboxylates like L-lactate are substrates for the carrier. Here we report that other organic anions, which are substrates for carriers belonging to several anion transporter families, are recognized by the sialic acid transporter. Hence, the mammalian system reveals once more novel aspects of solute transport, including sugars and a wide array of non-sugar compounds, apparently unique to this system. These data suggest that the search for the sialic acid storage disease gene can be initiated by a functional selection of genes from a limited number of anion transporter families. Among these, candidates will be identified by mapping to the known sialic acid storage disease locus.  相似文献   

16.
Amiloride is a weak inhibitor of Na+/Ca2+ exchange in isolated plasma membrane vesicles prepared from GH3 rat anterior pituitary cells. However, substitution on either a terminal guanidino nitrogen atom or the 5-amino nitrogen atom can increase inhibitory potency ca. 100-fold (I50 approximately 10 microM). A structure-activity study indicates that defined structural modifications of guanidino substituents are associated with increases in inhibitory activity. In contrast, analogues bearing 5-amino substituents generally increase in potency with increasing hydrophobicity of the substitution. Specificity in action of either class is indicated by several criteria. These inhibitors do not disrupt the osmotic integrity of the membrane, nor do they significantly interfere with plasmalemmal Ca2+-ATPase-driven Ca2+ uptake, Na+,K+-ATPase enzymatic activity, or the function of Ca2+ or K+ channels. Inhibition is freely reversible, further indicating a lack of nonspecific membrane effects. The mechanism by which each inhibitor class blocks exchange was found to be identical. Protonation of the guanidino moiety (i.e., cationic charge) is essential for activity. Analysis of transport inhibition as a function of Ca2+ concentration indicates noncompetitive kinetics. However, inhibition was reversed by elevating intravesicular Na+, indicating a competitive interaction with this ion. These results suggest that the inhibitors function as Na+ analogues, interact at a Na+ binding site on the carrier (presumably the site at which the third Na+ binds), and reversibly tie up the transporter in an inactive complex. In addition to blocking pituitary exchange, these analogues are effective inhibitors of the bovine brain and porcine cardiac transport systems.  相似文献   

17.
Rapid kinetic techniques were used to measure the transport of uridine in pig erythrocytes in zero-trans entry and exit and equilibrium exchange protocols. The kinetic parameters were computed by fitting appropriate integrated rate equations to the time-courses of transmembrane equilibration of radiolabeled uridine. Transport of uridine conformed to the simple carrier model with directional symmetry, but differential mobility of substrate-loaded and empty carrier. At 5 degrees C, the carrier moved about 30-times faster when loaded than when empty. Uridine transport was inhibited in a concentration-dependent manner by nitrobenzylthioinosine and dipyridamole and the inhibition correlated with the binding of the inhibitors to high-affinity binding sites on the cells (Kd about 1 and 10 nM, respectively). Thus, in its kinetic properties, differential mobility when empty and loaded, and sensitivity to inhibition by nitrobenzylthioinosine and dipyridamole, the transporter of pig erythrocytes is very similar to that of human erythrocytes. Also, the total number of high-affinity binding sites for nitrobenzylthioinosine and dipyridamole/cell were similar for the two cell types and the [3H]nitrobenzylthioinosine-labeled carrier of pig erythrocytes, just as that of human red cells, was mainly recovered in the band 4.5 protein fraction of Triton X-100-solubilized membranes. However, sodium dodecylsulfate-polyacrylamide gel electrophoresis of photoaffinity-labeled band 4.5 membrane proteins indicated a slightly higher molecular weight for the transporter from pig than human erythrocytes. We have also confirmed the lack of functional sugar transport in erythrocytes from adult pigs by measuring the uptake of various radiolabeled sugars. But in spite of the lack of functional sugar transport we recovered as much band 4.5 protein from pig as from human erythrocyte membranes.  相似文献   

18.
Monocarboxylate transporters (MCTs) catalyze the proton-linked transport of monocarboxylates such as L-lactate, pyruvate, and the ketone bodies across the plasma membrane. There are four isoforms, MCTs 1-4, which are known to perform this function in mammals, each with distinct substrate and inhibitor affinities. They are part of the larger SLC16 family of solute carriers, also known as the MCT family, which has 14 members in total, all sharing conserved sequence motifs. The family includes a high-affinity thyroid hormone transporter (MCT8), an aromatic amino acid transporter (T-type amino acid transporter 1/MCT10), and eight orphan members yet to be characterized. MCTs were predicted to have 12 transmembrane helices (TMs) with intracellular C- and N-termini and a large intracellular loop between TMs 6 and 7, and this was confirmed by labeling studies and proteolytic digestion. Site-directed mutagenesis has identified key residues required for catalysis and inhibitor binding and enabled the development of a molecular model of MCT1 in both inward and outward facing conformations. This suggests a likely mechanism for the translocation cycle. Although MCT family members are not themselves glycosylated, MCTs1-4 require association with a glycosylated ancillary protein, either basigin or embigin, for their correct translocation to the plasma membrane. These ancillary proteins have a single transmembrane domain and two to three extracellular immunoglobulin domains. They must remain closely associated with MCTs1-4 to maintain transporter activity. MCT1, MCT3, and MCT4 bind preferentially to basigin and MCT2 to embigin. The choice of binding partner does not affect substrate specificity or kinetics but can influence inhibitor specificity.  相似文献   

19.
The kinetics and activation energy of entry of pyruvate and lactate into the erythrocyte were studied at concentrations below 4 and 15mM respectively. The Km and Vmax. values for both substrates are reported, and it is shown that pyruvate inhibits competitively with respect to lactate and vice versa. In both cases the Km for the carboxylate as a substrate was the same as its Ki as an inhibitor. Alpha-Cyano-4-hydroxycinnamate and its analogues inhibited the uptake of both lactate and pyruvate competitively. Inhibition was also produced by treatment of cells with fluorodinitrobenzene but not with the thiol reagents or Pronase. At high concentrations of pyruvate or lactate (20mM), uptake of the carboxylate was accompanied by an efflux of Cl-ions. This efflux of Cl- was inhibited by alpha-cyano-4-hydroxycinnamate and picrate and could be totally abolished by very low (less than 10 muM) concentrations of the inhibitor of Cl- transport, 4,4'-di-isothiocyanostilbene-2,2'-disulphonic acid. This inhibitor titrated out the chlordie efflux induced by pyruvate, bicarbonate, formate and fluoride, in each case total inhibition becoming apparent when approximately 1.2x10(6) molecules of inhibitor were present per erythrocyte, that is, about one inhibitor molecule per molecule of the Cl- carrier. Evan when Cl- efflux was totally blocked pyruvate and lactate uptake occurred. Kinetic evidence is presented which suggests that the Cl- carrier can transport pyruvate and lactate with a high Km and high Vmax., but that an additional carrier with a low Km and a low Vmax. also exists. This carrier catalyses the exchange of small carboxylate anions with intracellular lactate, is competitively inhibited by alpha-cyano-4-hydroxycinnamate and non-competitively inhibited by picrate. The Cl- carrier shows a reverse pattern of inhibition. It is concluded that net efflux of lactic acid from the cell must occur on the Cl- carrier and involve exchange with HCO3 - followed by loss of CO2. The low Km carrier might be used in pyruvate/lactate or acetoacetate/beta-hydroxybutyrate exchanges involved in transferring reducing power across the cell membrane. The possibility that the Cl- carrier exists in cells other than the erythrocyte is discussed. It is concluded that its presence in other cell membranes together with a low intracellular Cl- concentration would explain why the pH in the cytoplasm is lower than that of the blood, and why permeable carboxylate anions do not accumulate within the cell when added from outside.  相似文献   

20.
Summary We have previously shown that a mechanism for transportingl-lactate is located in cardiac sarcolemmal membranes (Am. J. Physiol. 252:C483–C489, 1987). This mechanism has now been shown to transport pyruvate also. The transporter recognizes a wide range of monocarboxylic acids with chain lengths of three to six carbons, as evidenced by their ability to inhibitl-lactate uptake into sarcolemmal vesicles. The ability of the monocarboxylate analogues to inhibit depends strongly on the nature of substituents, particularly at the second carbon.l-lactate and pyruvate transport are not affected by dicarboxylates other than oxaloacetate. The transporter is inhibited by the protein modifiers diethylpyrocarbonate, dinitrofluorobenzene, and phenylisothiocyanate. Diethylpyrocarbonate inhibition is not reversed by hydroxylamine, nor is dinitrofluorobenzene inhibition reversed by thiol reagents, suggesting that the target residues are not histidine, or tyrosine or cysteine, respectively. Several monocarboxylates effectively protect the transporter from inhibition by the modifying reagents, suggesting that the modified residue(s) may be at or near the binding site. Alternatively, the target amino acid(s) in the transport protein may become inaccessible due to a conformation change triggered by the substrate analogues. Overall, the results suggest that a sensitive free amino group, associated with substrate binding, is attacked by the protein-modifying reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号