首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of the major cellular antioxidant defenses, glutathione (GSH) is particularly important in maintaining the cytosolic redox potential. Whereas the healthy myocardium is maintained at a highly reduced redox state, it has been proposed that oxidation of GSH can affect the dynamics of Ca2+-induced Ca2+ release. In this study, we used multiple approaches to define the effects of oxidized glutathione (GSSG) on ryanodine receptor (RyR)-mediated Ca2+ release in rabbit ventricular myocytes. To investigate the role of GSSG on sarcoplasmic reticulum (SR) Ca2+ release induced by the action potential, we used the thiol-specific oxidant diamide to increase intracellular GSSG in intact myocytes. To more directly assess the effect of GSSG on RyR activity, we introduced GSSG within the cytosol of permeabilized myocytes. RyR-mediated Ca2+ release from the SR was significantly enhanced in the presence of GSSG. This resulted in decreased steady-state diastolic [Ca2+]SR, increased SR Ca2+ fractional release, and increased spark- and non-spark-mediated SR Ca2+ leak. Single-channel recordings from RyR’s incorporated into lipid bilayers revealed that GSSG significantly increased RyR activity. Moreover, oxidation of RyR in the form of intersubunit crosslinking was present in intact myocytes treated with diamide and permeabilized myocytes treated with GSSG. Blocking RyR crosslinking with the alkylating agent N-ethylmaleimide prevented depletion of SR Ca2+ load induced by diamide. These findings suggest that elevated cytosolic GSSG enhances SR Ca2+ leak due to redox-dependent intersubunit RyR crosslinking. This effect can contribute to abnormal SR Ca2+ handling during periods of oxidative stress.  相似文献   

2.
The bioactivity of endothelium-derived nitric oxide(NO) is an important component of vascular homeostasis that issensitive to intracellular redox status. Because glutathione (GSH) is a major determinant of intracellular redox state, we sought to define itsrole in modulating endothelial NO bioactivity. In porcine aorticendothelial cells (PAECs), we depleted intracellular GSH (>70%) using1) buthionine-(S,R)-sulfoximine (BSO), whichinhibits GSH synthesis; 2) diamide, which oxidizes thiols;or 3) 1-chloro-2,4-dinitrobenzene (CDNB), which putativelydepletes GSH through glutathione S-transferase activity.Cellular GSH depletion with BSO had no effect on endothelial NObioactivity measured as A-23187-induced cGMP accumulation. In contrast,oxidation of intracellular thiols with diamide inhibited bothA-23187-induced cGMP accumulation and the cGMP response to exogenousNO. Diamide treatment of either PAECs, PAEC membrane fractions, orpurified endothelial nitric oxide synthase (eNOS) resulted insignificant inhibition (~75%) of eNOS catalytic activity measured asL-[3H]arginine-to-L-[3H]citrullineconversion. This effect appeared related to oxidation of eNOS thiols asit was completely reversed by dithiothreitol. Glutathione depletionwith CDNB inhibited A-23187-stimulated cGMP accumulation but not thecGMP response to exogenous NO. Rather, CDNB treatment impaired eNOScatalytic activity in intact PAECs, and this effect was reversed byexcess NADPH in isolated purified eNOS assays. Consistent with theseresults, we found spectral evidence that CDNB reacts with NADPH andrenders it inactive as a cofactor for either eNOS or glutathionereductase. Thus thiol-modulating agents exert pleiotropic effects onendothelial NO bioactivity, and these data may help to resolve a numberof conflicting previous studies linking GSH status with endothelialcell NO bioactivity.

  相似文献   

3.
An assay for reduced and oxidized glutathione was adapted to isolated rat epididymal adipocytes in order to correlate pentose phosphate cycle activity and glutathione metabolism. In collagenase-digested adipocytes the [GSH/GSSG] molar ratio was in excess of 100. Cells incubated for 1 hr with low glucose concentrations (0.28–0.55 mm) had higher GSH contents (3.2 μg/106 cells) than in the absence of glucose (2.3 μg/106 cells). The glutathione oxidant diamide caused a dose-related decrease in intracellular GSH, an increase in GSSG released into the medium, but no detectable change in the low intracellular GSSG content. The intracellular content of GSH and amount of GSSG released into the medium were therefore taken to reflect the glutathione status of the adipocytes most closely. Addition of H2O2 to a concentration of 60 μm to adipocytes caused to decline within 5 min in GSH content, which was less severe and more rapid to recover in the presence of 1.1 mm glucose, suggesting that the concomitant stimulation of glucose C-1 oxidation induced by the peroxide in the presence of glucose provided NADPH for regeneration of GSH. Further evidence for tight coupling between adipocyte [GSH/GSSG] ratios and pentose phosphate cycle activity was that (i) lowering intracellular GSH to 35–60% of control values by agents as diverse in action as t-butyl hydroperoxide, diamide, or the sulfhydryl blocker N-ethylmaleimide resulted in optimal stimulation of glucose C-1 oxidation and fractional pentose phosphate cycle activity, and (ii) incubating adipocytes directly with 2.5 mm GSSG resulted in a slight increase in glucose C-1 oxidation and when 0.5 mm NADP+ was also added a synergistic effect on pentose phosphate cycle activity was found. On the other hand, electron acceptors such as methylene blue did not lower cellular GSH content, but did stimulate the pentose phosphate cycle, confirming a site of action independent of glutathione metabolism. The results show that (i) glucose metabolism by the pentose phosphate cycle contributes to regeneration of GSH and that (ii) glutathione metabolism either directly or via coupled changes in [NADPH/NADP+] ratios may play a significant role in short-term control of the pentose phosphate cycle.  相似文献   

4.
Apoptosis plays a critical role in maintaining homeostasis of the intestinal epithelium. Dietary oxidants like peroxidized lipids could perturb cellular redox status and disrupt mucosal turnover. The objective of this study was to delineate the role of lipid hydroperoxide (LOOH) -induced redox shifts in intestinal apoptosis using the human colonic CaCo-2 cell. We found that subtoxic concentrations of LOOH increased CaCo-2 cell apoptosis. This LOOH-induced apoptosis was associated with a significant decrease in the ratio of reduced glutathione-to-oxidized glutathione (GSH/GSSG), which preceded DNA fragmentation by 12 to 14 h, suggesting a temporal relationship between the two events. Oxidation of GSH with the thiol oxidant diamide caused significant decreases in cellular GSH and GSH/GSSG at 15 min that correlated with the activation of caspase 3 (60 min) and cleavage of PARP (120 min), confirming a temporal link between induction of cellular redox imbalance and initiation of apoptotic cell death. These kinetic studies further reveal that oxidant-mediated early redox change (within 1 h) was a primary inciting event of the apoptotic cascade. Once initiated, the recovery of redox balance did not prevent the progression of CaCo-2 cell apoptosis to its biological end point at 24 h. Collectively, the study shows that subtoxic levels of LOOH disrupt intestinal redox homeostasis, which contributes to apoptosis. These results provide insights into the mechanism of hydroperoxide-induced mucosal turnover that have important implications for understanding oxidant-mediated genesis of gut pathology.  相似文献   

5.

An imbalance in the redox state, increased levels of lipid precursors and overactivation of de novo lipogenesis determine the development of fibrosis during nonalcoholic steatohepatitis (NASH). We evaluated the modulation of NADPH-producing enzymes associated with the antifibrotic, antioxidant and antilipemic effects of nicotinamide (NAM) in a model of NASH induced by excess fructose consumption. Male rats were provided drinking water containing 40% fructose for 16 weeks. During the last 12 weeks of fructose administration, water containing NAM was provided to some of the rats for 5 h/day. The biochemical profiles and the ghrelin, leptin, lipoperoxidation and TNF-α levels in serum and the glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME) and NADP+-dependent isocitric dehydrogenase (IDP) levels, the reduced/oxidized glutathione (GSH/GSSG) and reduced/oxidized nicotinamide adenine dinucleotide (phosphate) (NAD(P)H/NAD(P)+) ratios, and the levels of various lipogenic and fibrotic markers in the liver were evaluated. The results showed that hepatic fibrosis induced by fructose consumption was associated with weight gain, hunger-satiety system dysregulation, hyperinsulinemia, dyslipidemia, lipoperoxidation and inflammation. Moreover, increased levels of hepatic G6PD and ME activity and expression, the NAD(P)H/NAD(P)+ ratios, and GSSG concentration and increased expression of lipogenic and fibrotic markers were detected, and these alterations were attenuated by NAM administration. Specifically, NAM diminished the activity and expression of G6PD and ME, and this effect was associated with a decrease in the NADPH/NADP+ ratios, increased GSH levels and decreased lipoperoxidation and inflammation, ameliorating fibrosis and NASH development. NAM reduces liver steatosis and fibrosis by regulating redox homeostasis through a G6PD- and ME-dependent mechanism.

  相似文献   

6.
During plant-microbe interactions and in the environment, Xanthomonas campestris pv. phaseoli is likely to be exposed to high concentrations of multiple oxidants. Here, we show that simultaneous exposures of the bacteria to multiple oxidants affects cell survival in a complex manner. A superoxide generator (menadione) enhanced the lethal effect of an organic peroxide (tert-butyl hydroperoxide) by 1,000-fold; conversely, treatment of cells with menadione plus H2O2 resulted in 100-fold protection compared to that for cells treated with the individual oxidants. Treatment of X. campestris with a combination of H2O2 and tert-butyl hydroperoxide elicited no additive or protective effect. High levels of catalase alone are sufficient to protect cells against the lethal effect of menadione plus H2O2 and tert-butyl hydroperoxide plus H2O2. These data suggest that H2O2 is the lethal agent responsible for killing the bacteria as a result of these treatments. However, increased expression of individual genes for peroxide (alkyl hydroperoxide reductase, catalase)- and superoxide (superoxide dismutase)-scavenging enzymes or concerted induction of oxidative stress-protective genes by menadione gave no protection against killing by a combination of menadione plus tert-butyl hydroperoxide. However, X. campestris cells in the stationary phase and a spontaneous H2O2-resistant mutant (X. campestris pv. phaseoli HR) were more resistant to killing by menadione plus tert-butyl hydroperoxide. These findings give new insight into oxidant killing of Xanthomonas spp. that could be generally applied to other bacteria.  相似文献   

7.
The formation of radical species during the reaction of tert-butyl hydroperoxide and hypochlorous acid has been investigated by spin trapping and chemiluminescence. A superposition of two signals appeared incubating tert-butyl hydroperoxide with hypochlorous acid in the presence of the spin trap &#102 -(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN). The first signal (aN = 1.537mT, a&#103H = 0.148mT) was an oxidation product of POBN caused by the action of hypochlorous acid. The second spin adduct (aN = 1.484mT, a&#103H = 0.233mT) was derived from a radical species that was formed in the result of reaction of tert-butyl hydroperoxide with hypochlorous acid. Similarly, a superposition of two signals was also obtained using the spin trap N-tert-butyl- &#102 -phenylnitrone (PBN). tert-Butyl hydroperoxide was also treated with Fe2+ or Ce4+ in the presence of POBN. Using Fe2+ a spin adduct with a N= 1.633mT and a&#103H = 0.276mT was observed. The major spin adduct formed with Ce4+ was characterised by αN = 1.480mT and a&#103H = 0.233mT. The reaction of tert-butyl hydroperoxide with hypochlorous acid was accompanied by a light emission, that time profile and intensity were identical to those emission using Ce4+. The addition of Fe2+ to tert-butyl hydroperoxide yielded a much smaller chemiluminescence. Thus, tert-butyl hydroperoxide yielded in its reaction with hypochlorous acid or Ce4+ the same spin adduct and the same luminescence profile. Because Ce4+ is known to oxidise organic hydroperoxides to peroxyl radical species, it can be concluded that a similar reaction takes place in the case of hypochlorous acid.  相似文献   

8.
The present study reports cytoprotective and antioxidant activity of aqueous and alcoholic extracts of Rhodiola imbricata rhizome on tert-butyl hydroperoxide (tert-BHP) induced cytotoxicity in U-937 human macrophages. There was an increase in cytotoxicity and apoptosis significantly in the presence of tert-BHP over control cells. The tert-BHP induced cytotoxicity can be attributed to enhanced reactive oxygen species (ROS) production which in turn is responsible for fall in reduced glutathione (GSH) levels; further there was a significant decrease in mitochondrial potential and increase in apoptosis and DNA fragmentation. Both aqueous and alcoholic extracts of Rhodiola rhizome at a concentration of 250 μg/ml were found to inhibit tert-BHP induced free radical production, apoptosis and to restore the anti-oxidant levels to that of the control cells. The alcoholic extract of Rhodiola showed higher cytoprotective activities than aqueous extract. These observations suggest that the alcoholic and aqueous extracts of Rhodiola have marked cytoprotective and antioxidant activities.  相似文献   

9.
Changes in intracellular redox couples and redox reactive molecules have been implicated in the regulation of a variety of cellular processes, including cell proliferation and growth arrest by contact inhibition. However, the magnitude, direction, and temporal relationship of redox changes to cellular responses are incompletely defined. The present work sought to characterize redox and metabolic changes associated with proliferative stages to contact inhibition of growth in rat IEC-6 intestinal epithelial cells. From the first day of culture until 1 day before confluence, an increase in GSH concentrations and a significant reduction in the redox potential of the GSSG/2GSH couple were observed. These changes were accompanied by a decrease in relative reactive oxygen species (ROS) and nitric oxide (NO) concentrations and oxidation of the redox potential of the NADP+/reduced NADP and NAD+/NADH couples. Postconfluent cells exhibited a significant decrease in GSH concentrations and a significant oxidation of the GSSG/2GSH couple. When cell proliferation decreased, relative ROS concentrations increased (P < 0.01), whereas NO concentrations remained unchanged, and the NAD+/NADH couple became more reduced. Together, these data indicate that the redox potential of distinct couples varies differentially in both magnitude and direction during successive stages of IEC-6 growth. This finding points out the difficulty of defining intracellular redox status at particular stages of cell growth by examining only one redox species. In addition, the data provide a numerical framework for future research of regulatory mechanisms governed by distinct intracellular redox couples. cell proliferation; contact inhibition; glutathione  相似文献   

10.
In most cells, the major intracellular redox buffer is glutathione (GSH) and its disulfide-oxidized (GSSG) form. The GSH/GSSG system maintains the intracellular redox balance and the essential thiol status of proteins by thiol disulfide exchange. Topoisomerases are thiol proteins and are a target of thiol-reactive substances. In this study, the inhibitory effect of physiological concentration of GSH and GSSG on topoisomerase IIα activity in vitro was investigated. GSH (0-10 mM) inhibited topoisomerase IIα in a concentration-dependent manner while GSSG (1-100 μM) had no significant effect. These findings suggest that the GSH/GSSG system could have a potential in vivo role in regulating topoisomerase IIα activity.  相似文献   

11.
Importance of glucose-6-phosphate dehydrogenase activity in cell death   总被引:12,自引:0,他引:12  
The intracellular redox potential plays an important role incell survival. The principal intracellular reductant NADPH is mainlyproduced by the pentose phosphate pathway by glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme, and by6-phosphogluconate dehydrogenase. Considering the importance of NADPH,we hypothesized that G6PDH plays a critical role in cell death. Ourresults show that 1) G6PDHinhibitors potentiatedH2O2-inducedcell death; 2) overexpression ofG6PDH increased resistance toH2O2-induced cell death; 3) serum deprivation, astimulator of cell death, was associated with decreased G6PDH activityand resulted in elevated reactive oxygen species (ROS);4) additions of substrates for G6PDHto serum-deprived cells almost completely abrogated the serumdeprivation-induced rise in ROS; 5)consequences of G6PDH inhibition included a significant increase inapoptosis, loss of protein thiols, and degradation of G6PDH; and6) G6PDH inhibition caused changesin mitogen-activated protein kinase phosphorylation that were similarto the changes seen withH2O2.We conclude that G6PDH plays a critical role in cell death by affectingthe redox potential.  相似文献   

12.
Tumor necrosis factor alpha (TNF) plays an important role in mediating hepatocyte injury in various liver pathologies. TNF treatment alone does not cause the death of primary cultured hepatocytes, suggesting other factors are necessary to mediate TNF-induced injury. In this work the question of whether reactive oxygen species can sensitize primary cultured hepatocytes to TNF-induced apoptosis and necrosis was investigated. Sublethal levels of H(2)O(2), either as bolus doses or steady-state levels generated by glucose oxidase, were found to sensitize cultured hepatocytes to TNF-induced apoptosis. High levels of H(2)O(2) also triggered necrosis in hepatocytes regardless of whether TNF was present. Similarly, antimycin, a complex III inhibitor that increases reactive oxygen species generation from mitochondria, sensitized hepatocytes to TNF-induced apoptosis at low doses but caused necrosis at high doses. Redox changes seem to be important in sensitizing primary hepatocytes, because diamide, a thiol-oxidizing agent, and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of GSSG reductase, also increased TNF-induced apoptosis in cultured primary hepatocytes at sublethal doses. High doses of diamide and BCNU predominantly triggered necrotic cell death. Agents that sensitized hepatocytes to TNF-induced apoptosis -- H(2)O(2), antimycin, diamide, BCNU -- all caused a dramatic fall in the GSH/GSSG ratio. These redox alterations were found to inhibit TNF-induced IkappaB-alpha phosphorylation and NF-kappaB translocation to the nucleus, thus presumably inhibiting expression of genes necessary to inhibit the cytotoxic effects of TNF. Taken together, these results suggest that oxidation of the intracellular environment of hepatocytes by reactive oxygen species or redox-modulating agents interferes with NF-kappaB signaling pathways to sensitize hepatocytes to TNF-induced apoptosis. The TNF-induced apoptosis seems to occur only in a certain redox range -- in which redox changes can inhibit NF-kappaB activity but not completely inhibit caspase activity. The implication for liver disease is that concomitant TNF exposure and reactive oxygen species, either extrinsically generated (e.g., nonparenchymal or inflammatory cells) or intrinsically generated in hepatocytes (e.g., mitochondria), may act in concert to promote apoptosis and liver injury.  相似文献   

13.
Diabetes-induced changes in glucose formation, intracellular and mitochondrial glutathione redox states as well as hydroxyl free radicals (HFR) generation have been investigated in rabbit kidney-cortex tubules. In contrast to renal tubules of control animals, diabetes-evoked increase in glucose formation in the presence of either aspartate + glycerol + octanoate or malate as gluconeogenic precursors (for about 50%) was accompanied by a diminished intracellular glutathione reduced form (GSH)/glutathione oxidised one (GSSG) ratio by about 30–40%, while the mitochondrial GSH/GSSG ratio was not altered. However, a relationship between the rate of gluconeogenesis and the intracellular glutathione redox state was maintained in renal tubules of both control and diabetic rabbits, as concluded from measurements in the presence of various gluconeogenic precursors. Moreover, diabetes resulted in both elevation of the glutathione reductase activity in rabbit kidney-cortex and acceleration of renal HFR generation (by about 2-fold). On the addition of melatonin, the hormone exhibiting antioxidative properties, the control values of HFR production were restored, suggesting that this compound might be beneficial during diabetes therapy. In view of the data, it seems likely that diabetes-induced increase in HFR formation in renal tubules might be responsible for a diminished intracellular glutathione redox state despite elevated glutathione reductase activity and accelerated rate of gluconeogenesis, providing glucose-6-phosphate for NADPH generation via pentose phosphate pathway. (Mol Cell Biochem 261: 91–98, 2004)  相似文献   

14.
The influence of the intracellular glutathione status on bile acid excretion was studied in the perfused rat liver. Perturbation of the thiol redox state by short term additions of diamide (100 microM) or hydrogen peroxide (250 microM) or t-butyl hydroperoxide (250 microM) led to a reversible inhibition of biliary taurocholate release without affecting hepatic uptake; inhibition amounted to 45% for diamide and 90% for the hydroperoxides. Concomitantly, the bile acid accumulated intracellularly. Bile flow increased from 1.3 to 2.0 microliters X min-1 X g liver-1 upon infusion of taurocholate (10 microM); the latter value was suppressed to 1.2 microliters X min-1 X g liver-1 by the addition of t-butyl hydroperoxide (250 microM). Similarly, the hepatic disposition of another bile constituent, bilirubin, was suppressed by 70% upon addition of hydrogen peroxide. While the addition of hydrogen peroxide inhibited also the endogenous release of bile acids almost completely, endogenous bile flow was much less affected, decreasing from 1.3 to 1.0 microliters X min-1 X g liver-1. Measurement of [14C]erythritol clearance showed bile/perfusate ratios of about unity both in the absence and presence of hydrogen peroxide, suggesting canalicular origin of the bile under both conditions. In livers from Se-deficient rats low in Se-GSH peroxidase (less than 5% of controls), hydrogen peroxide inhibited taurocholate transport substantially less, providing evidence for the involvement of glutathione in mediating the inhibition observed in normal livers. The percentage inhibition of taurocholate release and intracellular glutathione disulfide (GSSG) content were closely correlated. The addition of t-butyl hydroperoxide caused a several-fold increase of biliary GSSG release, whereas biliary GSH release was even decreased. The results establish a role of glutathione in canalicular taurocholate disposition.  相似文献   

15.
Blood glutathione redox status in gestational hypertension   总被引:4,自引:0,他引:4  
Gestational hypertension during the third trimester reflects an exaggerated maternal inflammatory response to pregnancy. We hypothesized that oxidative stress present even in normal pregnancy becomes uncompensated in hypertensive patients. A glucose-6-phosphate dehydrogenase (G6PD) activity sufficient to meet the increased reductive equivalent need of the cells is indispensable for defense against oxidative stress. The erythrocyte glutathione redox system was studied, where G6PD is the only NADPH source. The glutathione (GSH) redox status was measured both in vivo and after an in vitro oxidative challenge in pregnant women with gestational hypertension (n = 19) vs. normotensive pregnant subjects (n = 18) and controls (n = 20). An erythrocyte GSH depletion with an increase in the oxidized form (GSSG) resulted in an elevated ratio GSSG/GSH (0.305 +/- 0.057; mean +/- SD) in hypertensive pregnant women vs. normotensive pregnant or control subjects (0.154 +/- 0.025; 0.168 +/- 0.073; p <.001). In hypertensive pregnant patients, a "GSH stability" decrease after an in vitro oxidative challenge suggested a reduced GSH recycling capacity resulting from an insufficient NADPH supply. The erythrocyte GSSG/GSH ratio may serve as an early and sensitive parameter of the oxidative imbalance and a relevant target for future clinical trials to control the effects of antioxidant treatment in women at increased risk of the pre-eclampsia syndrome.  相似文献   

16.
The present work demonstrates the ability of CO to prevent apoptosis in a primary culture of astrocytes. For the first time, the antiapoptotic behavior can be clearly attributed to the inhibition of mitochondrial membrane permeabilization (MMP), a key event in the intrinsic apoptotic pathway. In isolated non-synaptic mitochondria, CO partially inhibits (i) loss of potential, (ii) the opening of a nonspecific pore through the inner membrane, (iii) swelling, and (iv) cytochrome c release, which are induced by calcium, diamide, or atractyloside (a ligand of ANT). CO directly modulates ANT function by enhancing ADP/ATP exchange and prevents its pore-forming activity. Additionally, CO induces reactive oxygen species (ROS) generation, and its prevention by β-carotene decreases CO cytoprotection in intact cells as well as in isolated mitochondria, revealing the key role of ROS. On the other hand, CO induces a slight increase in mitochondrial oxidized glutathione, which is essential for apoptosis modulation by (i) delaying astrocytic apoptosis, (ii) decreasing MMP, and (iii) enhancing ADP/ATP translocation activity of ANT. Moreover, CO and GSSG trigger ANT glutathionylation, a post-translational process regulating protein function in response to redox cellular changes. In conclusion, CO protects astrocytes from apoptosis by preventing MMP, acting on ANT (glutathionylation and inhibition of its pore activity) via a preconditioning-like process mediated by ROS and GSSG.  相似文献   

17.
The ATP-dependent sequestration of Ca2+ by the plasma membrane fraction from rat liver is stimulated by reduced glutathione and dithiothreitol and inhibited by diamide and t-butyl hydroperoxide. The inhibitory effect on Ca2+ sequestration by the oxidizing agents is prevented in the presence of the thiols. Our results therefore suggest that free sulfhydryl group(s) may be critical for the activity of hepatic plasma membrane Ca2+ translocase, and that inhibition of this activity by the oxidation of such group(s) may contribute to the perturbation of Ca2+ homeostasis during oxidative stress.  相似文献   

18.
Summary We investigated changes of thiols (GSH, GSSG, and cysteine) induced by transplasma membrane electron transport after addition of artificial electron acceptors and the influence of the thiol level on redox activity. GSH, GSSG, and cysteine content of maize (Zea mays L. cv. Golden Bantam) roots and coleoptile segments was determined by high performance liquid chromatography with a fluorescence detector. GSSG increased after treatment with 0.8 mM diamide, an SH-group oxidizer. GSH level of roots increased after treatment with diamide, while GSH levels of coleoptiles decreased. Incubation of roots with the GSH biosynthesis inhibitor buthionine-D,L-sulfoximine for 6 days lowered the glutathione level up to 80%. However, the GSH/GSSG ratio of maize roots remained constant after treatment with both effectors. The GSH/GSSG ratio and the glutathione level were changed by addition of artificial electron acceptors like hexacyanoferrate (III) or hexabromoiridate (IV), which do not permeate the plasma membrane. Hexacyanoferrate (III) reduction was inhibited up to 25% after the cellular glutathione level was lowered by treatment with diamide or buthionine-D,L-sulfoximine. Proton secretion induced by reduction of the electron acceptors was not affected by both modulators. The change in glutathione level is different for roots and coleoptiles. Our data are discussed with regard to the role of GSH in electron donation for a plasma membrane bound electron transport system.Abbreviations Buthionine-D,L-sulfoximine s-n-butyl-homocysteine sulfoximine - cys cysteine - diamide 1,1-azobis (N,N-dimethyl-formamide) - DTE dithioerythritol - EDTA ethylenediaminetetraacetic acid - GSH reduced glutathione - GSSG oxidizied glutathione, glutathione disulfide - HBI IV hexabromoiridate (IV) (K2[IrBr6]) - HCF III hexacyanoferrate (III) (K3[Fe(CN)6] - NEM N-ethylmaleimide - PM plasma membrane - Tris Tris(hydroxymethyl)aminomethane  相似文献   

19.
BackgroundExtracellular surface protein disulfide isomerase-A1 (PDI) is involved in platelet aggregation, thrombus formation and vascular remodeling. PDI performs redox exchange with client proteins and, hence, its oxidation by extracellular molecules might alter protein function and cell response. In this study, we investigated PDI oxidation by urate hydroperoxide, a newly-described oxidant that is generated through uric acid oxidation by peroxidases, with a putative role in vascular inflammation.MethodsAmino acids specificity and kinetics of PDI oxidation by urate hydroperoxide was evaluated by LC-MS/MS and by stopped-flow. Oxidation of cell surface PDI and other thiol-proteins from HUVECs was identified using impermeable alkylating reagents. Oxidation of intracellular GSH and GSSG was evaluated with specific LC-MS/MS techniques. Cell adherence, detachment and viability were assessed using crystal violet staining, cellular microscopy and LDH activity, respectively.ResultsUrate hydroperoxide specifically oxidized cysteine residues from catalytic sites of recombinant PDI with a rate constant of 6 × 103 M−1 s−1. Incubation of HUVECs with urate hydroperoxide led to oxidation of cell surface PDI and other unidentified cell surface thiol-proteins. Cell adherence to fibronectin coated plates was impaired by urate hydroperoxide, as well as by other oxidants, thiol alkylating agents and PDI inhibitors. Urate hydroperoxide did not affect cell viability but significantly decreased GSH/GSSG ratio.ConclusionsOur results demonstrated that urate hydroperoxide affects thiol-oxidation of PDI and other cell surface proteins, impairing cellular adherence.General significanceThese findings could contribute to a better understanding of the mechanism by which uric acid affects endothelial cell function and vascular homeostasis.  相似文献   

20.
We reported that the first two cysteine residues out of three present in paired domain (PD), a DNA-binding domain, are responsible for redox regulation of Pax-8 DNA binding activity. We show that glutathionylation of these cysteines has a regulatory role in PD binding. Wild-type PD and its mutants with substitution of cysteine to serine were synthesized and named CCC, CSS, SCS, SSC, and SSS according to the positions of substituted cysteines. They were incubated in a buffer containing various ratios of GSH/GSSG and subjected to gel shift assay. Binding of CCC, CSS, and SCS was impaired with decreasing GSH/GSSG ratio, whereas that of SSC and SSS was not affected. Because [3H]glutathione was incorporated into CCC, CSS, and SCS, but not into SSC and SSS, the binding impairment was ascribed to glutathionylation of the redox-reactive cysteines. This oxidative inactivation of PD binding was reversed by a reductant dithiothreitol and by redox factor (Ref)-1 in vitro. To explore the glutathionylation in cells, Chinese hamster ovary cells overexpressing CSS and SCS were labeled with [35S]cysteine in the presence of cycloheximide. Immunoprecipitation with an antibody against PD revealed that treatment of the cells with an oxidant diamide induced the 35S incorporation into both mutants, suggesting the PD glutathionylation in cells. Since the two cysteine residues in PD are conserved in all Pax members, this novel posttranslational modification of PD would provide a new insight into molecular basis for modulation of Pax function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号