首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence-labeled wheat germ agglutinin binds specifically to N-acetylglucosamine in the outer peptidoglycan layer of gram-positive bacteria. The peptidoglycan layer of gram-negative bacteria is covered by a membrane and is not labeled by the lectin. By exploiting this phenomenon, an alternative Gram staining technique has been developed.  相似文献   

2.
Gram-negative bacteria possess stress responses to maintain the integrity of the cell envelope. Stress sensors monitor outer membrane permeability, envelope protein folding, and energization of the inner membrane. The systems used by gram-negative bacteria to sense and combat stress resulting from disruption of the peptidoglycan layer are not well characterized. The peptidoglycan layer is a single molecule that completely surrounds the cell and ensures its structural integrity. During cell growth, new peptidoglycan subunits are incorporated into the peptidoglycan layer by a series of enzymes called the penicillin-binding proteins (PBPs). To explore how gram-negative bacteria respond to peptidoglycan stress, global gene expression analysis was used to identify Escherichia coli stress responses activated following inhibition of specific PBPs by the β-lactam antibiotics amdinocillin (mecillinam) and cefsulodin. Inhibition of PBPs with different roles in peptidoglycan synthesis has different consequences for cell morphology and viability, suggesting that not all perturbations to the peptidoglycan layer generate equivalent stresses. We demonstrate that inhibition of different PBPs resulted in both shared and unique stress responses. The regulation of capsular synthesis (Rcs) phosphorelay was activated by inhibition of all PBPs tested. Furthermore, we show that activation of the Rcs phosphorelay increased survival in the presence of these antibiotics, independently of capsule synthesis. Both activation of the phosphorelay and survival required signal transduction via the outer membrane lipoprotein RcsF and the response regulator RcsB. We propose that the Rcs pathway responds to peptidoglycan damage and contributes to the intrinsic resistance of E. coli to β-lactam antibiotics.  相似文献   

3.
High-resolution structural information on optimally preserved bacterial cells can be obtained with cryo-electron microscopy of vitreous sections. With the help of this technique, the existence of a periplasmic space between the plasma membrane and the thick peptidoglycan layer of the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus was recently shown. This raises questions about the mode of polymerization of peptidoglycan. In the present study, we report the structure of the cell envelope of three gram-positive bacteria (B. subtilis, Streptococcus gordonii, and Enterococcus gallinarum). In the three cases, a previously undescribed granular layer adjacent to the plasma membrane is found in the periplasmic space. In order to better understand how nascent peptidoglycan is incorporated into the mature peptidoglycan, we investigated cellular regions known to represent the sites of cell wall production. Each of these sites possesses a specific structure. We propose a hypothetic model of peptidoglycan polymerization that accommodates these differences: peptidoglycan precursors could be exported from the cytoplasm to the periplasmic space, where they could diffuse until they would interact with the interface between the granular layer and the thick peptidoglycan layer. They could then polymerize with mature peptidoglycan. We report cytoplasmic structures at the E. gallinarum septum that could be interpreted as cytoskeletal elements driving cell division (FtsZ ring). Although immunoelectron microscopy and fluorescence microscopy studies have demonstrated the septal and cytoplasmic localization of FtsZ, direct visualization of in situ FtsZ filaments has not been obtained in any electron microscopy study of fixed and dehydrated bacteria.  相似文献   

4.
Signal peptide-driven secretion of precursor proteins directs polypeptides across the plasma membrane of bacteria. Two pathways, Sec- and SRP-dependent, converge at the SecYEG translocon to thread unfolded precursor proteins across the membrane, whereas folded preproteins are routed via the Tat secretion pathway. Gram-positive bacteria lack an outer membrane and are surrounded by a rigid layer of peptidoglycan. Interactions with their environment are mediated by proteins that are retained in the cell wall, often through covalent attachment to the peptidoglycan. In this review, we describe the mechanisms for both Sec-dependent secretion and sortase-dependent assembly of proteins in the envelope of Gram-positive bacteria. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

5.
Mycobacteriophages encounter a unique problem among phages of Gram-positive bacteria, in that lysis must not only degrade the peptidoglycan layer but also circumvent a mycolic acid-rich outer membrane covalently attached to the arabinogalactan–peptidoglycan complex. Mycobacteriophages accomplish this by producing two lysis enzymes, Lysin A (LysA) that hydrolyses peptidoglycan, and Lysin B (LysB), a novel mycolylarabinogalactan esterase, that cleaves the mycolylarabinogalactan bond to release free mycolic acids. The D29 LysB structure shows an α/β hydrolase organization with a catalytic triad common to cutinases, but which contains an additional four-helix domain implicated in the binding of lipid substrates. Whereas LysA is essential for mycobacterial lysis, a Giles Δ lysB mutant mycobacteriophage is viable, but defective in the normal timing, progression and completion of host cell lysis. We propose that LysB facilitates lysis by compromising the integrity of the mycobacterial outer membrane linkage to the arabinogalactan–peptidoglycan layer.  相似文献   

6.
Fluorescent in situ hybridization (FISH) is now a widely used method for identification of bacteria at the single-cell level. With gram-positive bacteria, the thick peptidoglycan layer of a cell wall presents a barrier for entry of horseradish peroxidase (HRP)-labeled probes. Therefore, such probes do not give any signal in FISH unless cells are first treated with enzymes which hydrolyze the peptidoglycan. We explored this feature of FISH to detect cells which have undergone permeabilization due to expression of autolytic enzymes. Our results indicate that FISH performed with HRP-labeled probes provides a sensitive method to estimate the states of cell walls of individual gram-positive bacteria.  相似文献   

7.
The cell wall of lactic acid bacteria has the typical Gram-positive structure made of a thick, multilayered peptidoglycan sacculus decorated with proteins, teichoic acids and polysaccharides, and surrounded in some species by an outer shell of proteins packed in a paracrystalline layer (S-layer). Specific biochemical or genetic data on the biosynthesis pathways of the cell wall constituents are scarce in lactic acid bacteria, but together with genomics information they indicate close similarities with those described in Escherichia coli and Bacillus subtilis, with one notable exception regarding the peptidoglycan precursor. In several species or strains of enterococci and lactobacilli, the terminal D-alanine residue of the muramyl pentapeptide is replaced by D-lactate or D-serine, which entails resistance to the glycopeptide antibiotic vancomycin. Diverse physiological functions may be assigned to the cell wall, which contribute to the technological and health-related attribut es of lactic acid bacteria. For instance, phage receptor activity relates to the presence of specific substituents on teichoic acids and polysaccharides; resistance to stress (UV radiation, acidic pH) depends on genes involved in peptidoglycan and teichoic acid biosynthesis; autolysis is controlled by the degree of esterification of teichoic acids with D-alanine; mucosal immunostimulation may result from interactions between epithelial cells and peptidoglycan or teichoic acids.  相似文献   

8.
Cell wall peptidoglycan synthesis in Escherichia coli is under stringent control. During amino acid deprivation, peptidoglycan synthesis is inhibited in re1A+ bacteria but not in re1A mutants. The relaxed synthesis of peptidoglycan by amino acid deprived re1A bacteria was inhibited by several beta-lactam antibiotics at concentrations which inhibited cell elongation in growing cultures suggesting that the transpeptidase activity of penicillin-binding protein (PBP-1B) was involved in this process. Structural studies on the peptidoglycan also indicated the involvement of transpeptidation in relaxed peptidoglycan synthesis. The peptidoglycan synthesized during amino acid deprivation was cross-linked to the existing cell wall peptidoglycan, and the degree of cross-linkage was the same as that of peptidoglycan synthesized by growing control cells. The relaxed synthesis of peptidoglycan was also inhibited by moenomycin, an inhibitor of the in vitro transglycosylase activities of PBPs, but the interpretation of this result depends on whether the transglycosylases are the sole targets of moenomycin in vivo. Most of the peptidoglycan lipoprotein synthesized by histidine-deprived re1A+ bacteria was in the free form as previously reported, possibly because of the restriction in peptidoglycan synthesis. In support of this proposal, most of the lipoprotein synthesized during histidine deprivation of re1A mutants was found to be covalently linked to peptidoglycan. Nevertheless, the peptidoglycan synthesized by amino acid deprived re1A bacteria was apparently deficient in bound lipoprotein as compared with peptidoglycan synthesized by normal growing control bacteria suggesting that the rate of lipoprotein synthesis during amino acid deprivation may be limiting.  相似文献   

9.
On-probe sample pretreatment using trifluoroacetic acid as an additional reagent enabled the direct detection of phospholipids in whole bacteria by means of matrix-assisted laser desorption ionization mass spectrometry for not only gram-negative organisms but also gram-positive ones with a thicker peptidoglycan layer.  相似文献   

10.
On-probe sample pretreatment using trifluoroacetic acid as an additional reagent enabled the direct detection of phospholipids in whole bacteria by means of matrix-assisted laser desorption ionization mass spectrometry for not only gram-negative organisms but also gram-positive ones with a thicker peptidoglycan layer.  相似文献   

11.
In Klebsiella pneumoniae the transmembrane β-barrel forming outer membrane protein KpOmpA mediates adhesion to a wide range of immune effector cells, thereby promoting respiratory tract and urinary infections. As major transmembrane protein OmpA stabilizes Gram-negative bacteria by anchoring their outer membrane to the peptidoglycan layer. Adhesion, osmotic pressure, hydrodynamic flow, and structural deformation apply mechanical stress to the bacterium. This stress can generate tensile load to the peptidoglycan-binding domain (PGBD) of KpOmpA. To investigate how KpOmpA reacts to mechanical stress, we applied a tensile load to the PGBD and observed a detailed unfolding pathway of the transmembrane β-barrel. Each step of the unfolding pathway extended the polypeptide connecting the bacterial outer membrane to the peptidoglycan layer and absorbed mechanical energy. After relieving the tensile load, KpOmpA reversibly refolded back into the membrane. These results suggest that bacteria may reversibly unfold transmembrane proteins in response to mechanical stress.  相似文献   

12.
The peptidoglycan layer of Spirillum serpens cell walls was isolated from intact cells after treatment with sodium dodecylsulfate and digestion with Pronase. The isolated peptidoglycan contained glucosamine, muramic acid, alanine, glutamic acid, and meso-diaminopimelic acid in the approximate molar ratio of 1:1:2:1:1. Aspartic acid and glycine were the only other amino acids found in significant quantities. N-terminal amino acid analyses of the tetrapeptide amino acids in the peptidoglycan revealed that 54% of the diaminopimelic acid molecules are involved in cross-linkage between tetrapeptides. This amount of cross-linkage is greater than that found in the peptidoglycan of previously studied cell walls of gram-negative bacteria. The polysaccharide backbone was isolated, after myxobacter AL-1 enzyme digestion of the peptidoglycan, by fractionation with ECTEOLA-cellulose and Sephadex G-100. An average length of 99 hexosamines for the polysaccharide chains was found (ratio of total hexosamines to reducing end groups).  相似文献   

13.
The Gram stain differentiates bacteria into two fundamental varieties of cells. Bacteria that retain the initial crystal violet stain (purple) are said to be 'Gram-positive,' whereas those that are decolorized and stain red with carbol fuchsin (or safranin) are said to be 'Gram-negative.' This staining response is based on the chemical and structural makeup of the cell walls of both varieties of bacteria. Gram-positives have a thick, relatively impermeable wall that resists decolorization and is composed of peptidoglycan and secondary polymers. Gram-negatives have a thin peptidoglycan layer plus an overlying lipid-protein bilayer known as the outer membrane, which can be disrupted by decolorization. Some bacteria have walls of intermediate structure and, although they are officially classified as Gram-positives because of their linage, they stain in a variable manner. One prokaryote domain, the Archaea, have such variability of wall structure that the Gram stain is not a useful differentiating tool.  相似文献   

14.
The cell wall is responsible for cell integrity and the maintenance of cell shape in bacteria. The Gram-positive bacterial cell wall consists of a thick peptidoglycan layer located on the outside of the cytoplasmic membrane. Bacterial cell membranes, like eukaryotic cell membranes, are known to contain domains of specific lipid and protein composition. Recently, using the membrane-binding fluorescent dye FM4-64, helix-like lipid structures extending along the long axis of the cell and consisting of negatively charged phospholipids were detected in the rod-shaped bacterium Bacillus subtilis. It was also shown that the cardiolipin-specific dye, nonyl acridine orange (NAO), is preferentially distributed at the cell poles and in the septal regions in both Escherichia coli and B. subtilis. These results suggest that phosphatidylglycerol is the principal component of the observed spiral domains in B. subtilis. Here, using the fluorescent dyes FM4-64 and NAO, we examined whether these lipid domains are linked to the presence of cell wall peptidoglycan. We show that in protoplasted cells, devoid of the peptidoglycan layer, helix-like lipid structures are not preserved. Specific lipid domains are also missing in cells depleted of MurG, an enzyme involved in peptidoglycan synthesis, indicating a link between lipid domain formation and peptidoglycan synthesis.  相似文献   

15.
The bacterial cell envelope is critical to support and maintain cellular life. In Gram-negative bacterial cells, the outer membrane and the peptidoglycan layer are two important parts of the cell envelope and they harbour abundant proteins. Here, we report the identification and characterization of a previously unknown p eptidoglycan-a ssociated p rotein, PapA, from the Gram-negative Comamonas testosteroni. PapA bound peptidoglycan with its C-terminal domain and interacted with the outer-membrane porin OmpC. The PapA-OmpC complex riveted the outer membrane and the peptidoglycan layer, and played a role in maintaining cell envelope integrity. When papA was disrupted, the mutant CNB-1ΔpapA apparently had an outer membrane partly separated from the peptidoglycan layer. Phenotypically, the mutant CNB-1ΔpapA lost chemotactic responses and had longer lag-phase of growth, less flagellation and higher sensitivity to harsh environments. Totally, 1093 functionally unknown PapA homologues were identified from the public NR protein database and they were mainly distributed in Burkholderiales of Betaproteobacteria. Our finding provides a clue that the PapA homologous proteins might function as a rivet to maintain cell envelope integrity in those Gram-negative bacteria.  相似文献   

16.
Peptidoglycan in obligate intracellular bacteria   总被引:1,自引:0,他引:1       下载免费PDF全文
Peptidoglycan is the predominant stress‐bearing structure in the cell envelope of most bacteria, and also a potent stimulator of the eukaryotic immune system. Obligate intracellular bacteria replicate exclusively within the interior of living cells, an osmotically protected niche. Under these conditions peptidoglycan is not necessarily needed to maintain the integrity of the bacterial cell. Moreover, the presence of peptidoglycan puts bacteria at risk of detection and destruction by host peptidoglycan recognition factors and downstream effectors. This has resulted in a selective pressure and opportunity to reduce the levels of peptidoglycan. In this review we have analysed the occurrence of genes involved in peptidoglycan metabolism across the major obligate intracellular bacterial species. From this comparative analysis, we have identified a group of predicted ‘peptidoglycan‐intermediate’ organisms that includes the Chlamydiae, Orientia tsutsugamushi, Wolbachia and Anaplasma marginale. This grouping is likely to reflect biological differences in their infection cycle compared with peptidoglycan‐negative obligate intracellular bacteria such as Ehrlichia and Anaplasma phagocytophilum, as well as obligate intracellular bacteria with classical peptidoglycan such as Coxiella, Buchnera and members of the Rickettsia genus. The signature gene set of the peptidoglycan‐intermediate group reveals insights into minimal enzymatic requirements for building a peptidoglycan‐like sacculus and/or division septum.  相似文献   

17.
Parsons LM  Lin F  Orban J 《Biochemistry》2006,45(7):2122-2128
Peptidoglycan-associated lipoprotein (Pal) is a potential vaccine candidate from Haemophilus influenzae that is highly conserved in Gram-negative bacteria and anchored to the outer membrane through an N-terminal lipid attachment. Pal stabilizes the outer membrane by providing a noncovalent link to the peptidoglycan (PG) layer through a periplasmic domain. Using NMR spectroscopy, we determined the three-dimensional structure of a complex between the periplasmic domain of Pal and a biosynthetic peptidoglycan precursor (PG-P), UDP-N-acetylmuramyl-L-Ala-alpha-d-Glu-m-Dap-D-Ala-d-Ala (m-Dap is meso-diaminopimelate). Pal has a binding pocket lined with conserved surface residues that interacts exclusively with the peptide portion of the ligand. The m-Dap residue, which is mainly found in the cell walls of Gram-negative bacteria, is sequestered in this pocket and plays an important role by forming hydrogen bond and hydrophobic contacts to Pal. The structure provides insight into the mode of cell wall recognition for a broad class of Gram-negative membrane proteins, including OmpA and MotB, which have peptidoglycan-binding domains homologous to that of Pal.  相似文献   

18.
The specificity of antibodies directed against the peptidoglycan of gram-negative bacteria was studied. The peptidoglycans of Proteus vulgaris, Escherichia coli, Moraxella glucidolytica, Neisseria perflava, give identical precipitin reactions. By means of inhibition studies with various peptidoglycan subunits and synthetic peptides, it was shown that the antibodies are essentially directed against the peptide moiety of the peptidoglycan: L-Ala-D-Glu (L)-mesoA2pm-(L)-D-Ala, that the peptide reacts better with antibodies when it is not cross-linked, and that the C-terminal portion-meso-A2pm-D-Ala of the peptide is immunodominant. These results explain the immunological identity of the peptidoglycans of gram-negative bacteria, which possess the same peptide subunit. Only weak cross-reactivity was observed with the peptidoglycans of gram-positive bacteria (Streptococcus faecium, Micrococcus lysodeikticus, Corynebacterium poinsettiae) where meso-diaminopimelic acid is replaced by L-lysine or L-homoserine. However, the peptidoglycan of Bacillus megaterium which possesses the same peptide subunit as gram-negative bacteria, gives only a reaction of partial identity with these bacteria. This result suggests the presence on the peptidoglycan of gram-negative bacteria, of other undefined antigenic determinants.  相似文献   

19.
Summary Electron microscopic studies of thin sections of filaments, knots, resettes, gonidia, and gonidial-forming filaments of Leucothrix mucor were carried out. The cell wall is typical of gram-negative bacteria, with a double outer layer of variable thickness, a single thin middle layer which is probably peptidoglycan, and a double inner layer which is the cell membrane. The transverse septa of these filaments show two peptidoglycan layers, and no clearly demarked outer layer. During gonidial formation, there is a gradual rounding up of the cells, and the transverse septa become part of the gonidial wall. The cell membrane contains many invaginations, both along the outer wall and along the transverse septa. Thin sections through rosettes show the holdfast as material which is a heavily-staining amorphous material peripheral to the outer wall layer. Sections through knots show highly contorted cell walls, closely appressed. Fibrillar nuclear material, ribosomes, and storage granules can be seen within the cytoplasmic matrix.  相似文献   

20.
The Gram stain differentiates bacteria into two fundamental varieties of cells. Bacteria that retain the initial crystal violet stain (purple) are said to be ''Gram-positive,'' whereas those that are decolorized and stain red with carbol fuchsin (or safranin) are said to be ''Gram-negative.'' This staining response is based on the chemical and structural makeup of the cell walls of both varieties of bacteria. Gram-positives have a thick, relatively impermeable wall that resists decolorization and is composed of peptidoglycan and secondary polymers. Gram-negatives have a thin peptidoglycan layer plus an overlying lipid-protein bilayer known as the outer membrane, which can be disrupted by decolorization. Some bacteria have walls of intermediate structure and, although they are officially classified as Gram-positives because of their linage, they stain in a variable manner. One prokaryote domain, the Archaea, have such variability of wall structure that the Gram stain is not a useful differentiating tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号