首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Expression of thrS, the gene encoding Escherichia coli threonyl-tRNA synthetase, is negatively autoregulated at the translational level. Regulation is due to the binding of threonyl-tRNA synthetase to its own mRNA at a site called the operator, located immediately upstream of the initiation codon. The present work investigates the relationship between regulation and mRNA degradation. We show that two regulatory mutations, which increase thrS expression, cause an increase in the steady-state mRNA concentration. Unexpectedly, however, the half-life of thrS mRNA in the derepressed mutants is equal to that of the wild-type, indicating that mRNA stability is independent of the repression level. All our results can be explained if one assumes that thrS mRNA is either fully translated or immediately degraded. The immediately degraded RNAs are never detected due to their extremely short half-lives, while the fully translated messengers share the same half-lives, irrespective of the mutations. The increase in the steady-state level of thrS mRNA in the derepressed mutants is simply explained by an increase in the population of translated molecules, i.e. those never bound by the repressor, ThrRS. Despite this peculiarity, thrS mRNA degradation seems to follow the classical degradation pathway. Its stability is increased in a strain defective for RNase E, indicating that an endonucleolytic cleavage by this enzyme is the rate-limiting process in degradation. We also observe an accumulation of small fragments corresponding to the 5' end of the message in a strain defective for polynucleotide phosphorylase, indicating that, following the endonucleolytic cleavages, fragments are normally degraded by 3' to 5' exonucleolytic trimming. Although mRNA degradation was suspected to increase the efficiency of translational control based on several considerations, our results indicate that inhibition of mRNA degradation has no effect on the level of repression by ThrRS.  相似文献   

12.
13.
Mutations which largely inactivate polynucleotide phosphorylase and which render RNase II thermolabile exert two effects on the metabolism of the two nested mRNAs which encode ribosomal protein S20. (i) The lifetime of both mRNA species is extended 2.5-fold at 38 degrees C in a strain harboring both mutations. (ii) A relatively stable truncated fragment of these mRNAs accumulates to significant levels in strains lacking polynucleotide phosphorylase. The truncated RNA (Po RNA) is 147 to 148 residues long and is coterminal with the 3' ends of intact S20 mRNAs. Its 5' end appears to be generated by endonucleolytic cleavage to the 5' side of a G residue in the sequence AACCGAUC. The data are consistent with the hypothesis that S20 mRNAs can be degraded by alternative pathways. The normal pathway depends on functional polynucleotide phosphorylase and is concerted, since S20 mRNAs disappear without accumulation of detectable intermediates in the decay process. The slower alternative pathway is followed when polynucleotide phosphorylase is inactivated by mutation. This pathway is distinguished by segmental rather than concerted degradation of S20 mRNAs and involves at least one endonucleolytic cleavage. The 5' two-thirds of S20 mRNAs decays significantly more quickly than the 3' third in this latter mode of mRNA turnover.  相似文献   

14.
15.
16.
17.
18.
19.
20.
A set of plasmids was constructed so as to contain point mutations which limit the efficiency and/or extent of translation of the gene for ribosomal protein S20. These plasmids were transformed into strains carrying mutations in the genes for polynucleotide phosphorylase (pnp-7), RNase E (rne-1), or both. Subsequently, the effect of translational efficiency on mRNA abundance and chemical half-life was determined. The data indicated that mutations altering translational efficiency also affected mRNA levels over a 10-fold range. This variation in mRNA abundance occurred independently of mutations in either RNase E or polynucleotide phosphorylase, both of which determine the stability of the S20 mRNAs. Moreover, a mutation at codon 15 which caused premature termination of translation of the S20 mRNA did not significantly reduce its stability in different genetic backgrounds. We propose a model in which initiation of translation competes for early steps in mRNA turnover, which could be the binding of RNase E itself or as a complex to one or more sites near the 5' terminus of the S20 mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号