首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
绿豆抗豆象遗传的初步研究   总被引:1,自引:0,他引:1  
绿豆象(Callos0bruchun chinensis L.)是豇豆属豆类作物重要的仓库害虫.本研究通过抗豆象杂交育种后代VC1973A/TC1966 F1、F2和VC1973A/(VC1973A/TC1966 F2)BC1F1及TC1966/(VC1973A/TC1966 F2)BC1F1分离群体的遗传分析,发现绿豆抗豆象性状符合31的遗传分离规律,证明绿豆对豆象的抗性由1对显性单基因(Aa)控制,抗虫性为显性(A),感虫为隐性(a).  相似文献   

2.
Direct acting antivirals have dramatically increased the efficacy and tolerability of hepatitis C treatment, but drug resistance has emerged with some of these inhibitors, including nonstructural protein 3/4?A protease inhibitors (PIs). Although many co-crystal structures of PIs with the NS3/4A protease have been reported, a systematic review of these crystal structures in the context of the rapidly emerging drug resistance especially for early PIs has not been performed. To provide a framework for designing better inhibitors with higher barriers to resistance, we performed a quantitative structural analysis using co-crystal structures and models of HCV NS3/4A protease in complex with natural substrates and inhibitors. By comparing substrate structural motifs and active site interactions with inhibitor recognition, we observed that the selection of drug resistance mutations correlates with how inhibitors deviate from viral substrates in molecular recognition. Based on this observation, we conclude that guiding the design process with native substrate recognition features is likely to lead to more robust small molecule inhibitors with decreased susceptibility to resistance.  相似文献   

3.
The broad-spectrum mildew resistance genes RPW8.1 and RPW8.2 define a unique type of plant disease resistance (R) gene, and so far homologous sequences have been found in Arabidopsis thaliana only, which suggests a recent origin. In addition to RPW8.1 and RPW8.2, the RPW8 locus contains three homologs of RPW8, HR1, HR2, and HR3, which do not contribute to powdery mildew resistance. To investigate whether RPW8 has originated recently, and if so the processes involved, we have isolated and analyzed the syntenic RPW8 loci from Arabidopsis lyrata, and from Brassica rapa and B. oleracea. The A. lyrata locus contains four genes orthologous to HR1, HR2, HR3, and RPW8.2, respectively. Two syntenic loci have been characterized in Brassica; one locus contains three genes and is present in both B. oleracea and B. rapa, and the other locus contains a single gene and is detected in B. rapa only. The Brassica homologs have highest similarity to HR3. Sequence analyses suggested that the RPW8 gene family in Brassicaceae originated from an HR3-like ancestor gene through a series of duplications and that RPW8.1 and RPW8.2 evolved from functional diversification through positive selection several MYA. Examination of the sequence polymorphism of 32 A. thaliana accessions at the RPW8 locus and their disease reaction phenotypes revealed that the polymorphic RPW8 locus defines a major source of resistance to powdery mildew diseases. A possible evolutionary mechanism by which functional polymorphism at the AtRPW8 locus has been maintained in contemporary populations of A. thaliana is discussed.  相似文献   

4.
Aims Many resistance genes against fungal pathogens show costs of resistance. Genetically modified (GM) plants that differ in only one or a few resistance genes from control plants present ideal systems for measuring these costs in the absence of pathogens.Methods To assess the ecological relevance of costs of pathogen resistance, we grew individual plants of four transgenic spring wheat lines in a field trial with three pathogen levels and varied the genetic diversity of the crop.Important findings We found that two lines with a Pm3b transgene were more resistant to powdery mildew than their sister lines of the variety Bobwhite, whereas lines with chitinase (A9) or chitinase and glucanase (A13) transgenes were not more resistant than their mother variety Frisal. Nevertheless, in the absence of the pathogen, both the GM lines of Bobwhite as well as those of Frisal performed significantly worse than their controls, i.e. Pm3b #1 and Pm3b #2 had 39% or 53% and A9 and A13 had 14% or 23% lower yields. In the presence of the pathogen, all GM lines except Pm3b #2 could increase their yields and other fitness-related traits, reaching the performance levels of the control lines. Line Pm3b #2 seemed to have lost its phenotypic plasticity and had low performance in all environments. This may have been caused by very high transgene expression. No synergistic effects of mixing different GM lines with each other were detected. This might have been due to high transgene expression or the similarity between the lines regarding their resistance genes. We conclude that costs of resistance can be high for transgenic plants with constitutive transgene expression and that this can occur even in cases where the non-transgenic control lines are already relatively resistant, such as in our variety Frisal. Transgenic plants could only compete with conventional varieties in environments with high pathogen pressure. Furthermore, the large variability among the GM lines, which may be due to unpredictable transgene expression, suggests that case-by-case assessments are necessary to evaluate costs of resistance.  相似文献   

5.
In this report we show that the adenovirus E3 region 14.7 kDa protein, heat and sodium arsenite, which have been defined previously as inhibitors of cytolysis, inhibit the tumor necrosis factor-alpha (TNF)-induced release of 3H-arachidonic acid from cycloheximide-sensitized C3HA fibroblasts. Since the A23187-induced release of 3H-a.a. was unaffected, our results suggest that these inhibitors provide resistance to lysis by selectively interfering with the lytic response pathway. Our results also show that heat and sodium arsenite can themselves induce the release of 3H-arachidonic acid. These results raise the possibility that stressor-induced resistance to TNF results from the selective desensitization of phospholipase A2.  相似文献   

6.
The results indicative of chromosomal localization of the unstable chloramphenicol resistance determinant in Streptomyces coelicolor A3(2) have been obtained. Independent mutations specifying chloramphenicol sensitivity in different strains of S. coelicolor A3(2), S18 and A617M are localized in the same region flanked by markers argA1 and cysD18 on the genetic map. Mutations restoring chloramphenicol resistance are also localized in this region. Different locations of the genetically unstable determinant of chloramphenicol resistance detected in various laboratories are discussed, in relation to the results showing that transfer to chloramphenicol sensitivity is due to a set of various rearrangements (deletions, amplifications, deamplifications, etc.), differing in separate variants.  相似文献   

7.
Zhang DW  Gu HM  Vasa M  Muredda M  Cole SP  Deeley RG 《Biochemistry》2003,42(33):9989-10000
Human multidrug resistance protein (MRP) 3 is the most closely related homologue of MRP1. Like MRP1, MRP3 confers resistance to etoposide (VP-16) and actively transports 17 beta-estradiol 17-(beta-D-glucuronide) (E(2)17 beta G), cysteinyl leukotriene 4 (LTC(4)), and methotrexate, although with generally lower affinity. Unlike MRP1, MRP3 also transports monovalent bile salts. We have previously demonstrated that hydrogen-bonding residues predicted to be in the inner-leaflet spanning segment of transmembrane (TM) 17 of MRP1 are important for drug resistance and E(2)17 beta G transport. We have now examined the importance of the hydrogen-bonding potential of residues in TM17 of MRP3 on both substrate specificity and overall activity. Mutation S1229A reduced only methotrexate transport. Mutations S1231A and N1241A decreased resistance to VP-16 and transport of E(2)17 beta G and methotrexate but not taurocholate. Mutation Q1235A also reduced resistance to VP-16 and transport of E(2)17beta G but increased taurocholate transport without affecting transport of methotrexate. Mutations Y1232F and S1233A reduced resistance to VP-16 and the transport of all three substrates tested. In contrast, mutation T1237A markedly increased VP-16 resistance and transport of all substrates. On the basis of the substrates analyzed, residues Ser(1229), Ser(1231), Gln(1235), and Asn(1241) play an important role in determining the specificity of MRP3, while mutation of Tyr(1232), Ser(1233), and Thr(1237) affects overall activity. Unlike MRP1, the involvement of polar residues in determining substrate specificity extends throughout the TM helix. Furthermore, elimination of the hydrogen-bonding potential of a single amino acid, Thr(1237), markedly enhanced the ability of the protein to confer drug resistance and to transport all substrates examined.  相似文献   

8.
The bone marrow (BM) microenvironment contributes to drug resistance in acute myeloid leukaemia (AML) and multiple myeloma (MM). We have shown that the critical drug metabolizing enzymes cytochrome P450 (CYP) 3A4 and cytidine deaminase (CDA) are highly expressed by BM stroma, and play an important role in this resistance to chemotherapy. However, what factors influence the chemoprotective capacity of the BM microenvironment, specifically related to CYP3A4 and CDA expression, are unknown. In this study, we found that the presence of AML cells decreases BM stromal expression of CYP3A4 and CDA, and this effect appears to be at least partially the result of cytokines secreted by AML cells. We also observed that stromal CYP3A4 expression is up‐regulated by drugs commonly used in AML induction therapy, cytarabine, etoposide and daunorubicin, resulting in cross‐resistance. Cytarabine also up‐regulated CDA expression. The up‐regulation of CYP3A4 associated with disease control was reversed by clarithromycin, a potent inhibitor of CYP3A4. Our data suggest that minimal residual disease states are characterized by high levels of stromal drug metabolizing enzymes and thus, strong microenvironment‐mediated drug resistance. These results further suggest a potential role for clinically targeting drug metabolizing enzymes in the microenvironment.  相似文献   

9.
A 12 kDa cysteine-rich protein is secreted by Fusarium oxysporum f. sp. lycopersici during colonization of tomato xylem vessels. Peptide sequences obtained with mass spectrometry allowed identification of the coding sequence. The gene encodes a 32 kDa protein, designated Six1 for secreted in xylem 1. The central part of Six1 corresponds to the 12 kDa protein found in xylem sap of infected plants. A mutant that had gained virulence on a tomato line with the I-3 resistance gene was found to have lost the SIX1 gene along with neighbouring sequences. Transformation of this mutant with SIX1 restored avirulence on the I-3 line. Conversely, deletion of the SIX1 gene in a wild-type strain results in breaking of I-3-mediated resistance. These results suggest that I-3-mediated resistance is based on recognition of Six1 secreted in xylem vessels.  相似文献   

10.
Genetic analyses have indicated that brown stem rot (BSR) resistance in soybean is conferred by dominant alleles at three independent loci, the actions of which may be modified by linked or independent loci. A study was conducted to characterize the inheritance of BSR resistance in PI 567609, a soybean plant introduction from China. Segregating progeny from crosses of PI 567609 with BSR-susceptible and -resistant genotypes were evaluated for response to BSR-causal fungus, Phialophora gregata. Genetic analyses indicated that PI 567609 carries a single gene or cluster of linked genes for brown stem rot resistance, and that this gene (or cluster) is allelic to, or tightly linked to previously identified resistance genes, Rbs1, Rbs2, and Rbs3. Because previous allelism tests indicated that Rbs1, Rbs2, and Rbs3 were unlinked, and molecular mapping studies have indicated that Rbs1, Rbs2, and Rbs3 are linked on molecular linkage group J of soybean, a new model is proposed for BSR resistance. In this model, BSR resistance is controlled through the interaction of alleles at four independent loci, at least two of which are necessary to condition a resistance response. Functional redundancy at three of these loci allows any one of the three to interact with a fourth locus to confer resistance to BSR.  相似文献   

11.
The development of resistance to anti-retroviral drugs targeted against HIV is an increasing clinical problem in the treatment of HIV-1-infected individuals. Many patients develop drug-resistant strains of the virus after treatment with inhibitor cocktails (HAART therapy), which include multiple protease inhibitors. Therefore, it is imperative that we understand the mechanisms by which the viral proteins, in particular HIV-1 protease, develop resistance. We have determined the three-dimensional structure of HIV-1 protease NL4-3 in complex with the potent protease inhibitor TL-3 at 2.0 A resolution. We have also obtained the crystal structures of three mutant forms of NL4-3 protease containing one (V82A), three (V82A, M46I, F53L) and six (V82A, M46I, F53L, V77I, L24I, L63P) point mutations in complex with TL-3. The three protease mutants arose sequentially under ex vivo selective pressure in the presence of TL-3, and exhibit fourfold, 11-fold, and 30-fold resistance to TL-3, respectively. This series of protease crystal structures offers insights into the biochemical and structural mechanisms by which the enzyme can overcome inhibition by TL-3 while recovering some of its native catalytic activity.  相似文献   

12.
13.
BCAR3 binds to the carboxy-terminus of p130Cas, a focal adhesion adapter protein. Both BCAR3 and p130Cas have been linked to resistance to anti-estrogens in breast cancer, Rac activation and cell motility. Using R743A BCAR3, a point mutant that has lost the ability to bind p130Cas, we find that BCAR3-p130Cas complex formation is not required for BCAR3-mediated anti-estrogen resistance, Rac activation or discohesion of epithelial breast cancer cells. Complex formation was also not required for BCAR3-induced lamellipodia formation in BALB/c-3T3 fibroblasts but was required for optimal BCAR3-induced motility. Although both wildtype and R743A BCAR3 induced phosphorylation of p130Cas and the related adapter protein HEF1/NEDD9, chimeric NSP3:BCAR3 experiments demonstrate that such phosphorylation does not correlate with BCAR3-induced anti-estrogen resistance or lamellipodia formation. Wildtype but not R743A BCAR3 induced lamellipodia formation and augmented cell motility in p130Cas−/− murine embryonic fibroblasts (MEFs), suggesting that while p130Cas itself is not strictly required for these endpoints, complex formation with other CAS family members is, at least in cells lacking p130Cas. Overall, our work suggests that many, but not all, BCAR3-mediated signaling events in epithelial and mesenchymal cells are independent of p130Cas association. These studies also indicate that disruption of the BCAR3-p130Cas complex is unlikely to reverse BCAR3-mediated anti-estrogen resistance.  相似文献   

14.

Background

Lung cancer is the leading cause of cancer-related deaths worldwide, and treatments for lung cancer have a high failure rate. Anti-angiogenic therapy is also often ineffective because of refractory disease. Endostatin (ES) is one of the most widely-used anti-angiogenic drugs for lung cancer in China, and resistance to it is a barrier that needs to be resolved. It has been shown that myeloid-derived suppressor cells (MDSCs) are involved in resistance to ES. Whether other cells and/or cell factors in the tumor microenvironment that have been shown to be related to resistance to other anti-cancer drugs are also involved in ES resistance is unknown.

Results

In this study, we showed that after continuously treatment with ES for 12 days, volumes of A549 transplantation tumors of mice reached the sizes of tumors which were borne by mice that were treated with normal saline and this meant that resistance to ES appeared. Cancer stem cells (CSCs), which have been widely accepted as one of reasons responsible for resistance to many anti-tumor drugs were also being discovered increased proportionally in A549 transplantation tumors after ES treatment for 12 days. During further exploration of reasons for this increase, we discovered that after ES treatment, microvessel density and vascular endothelial growth factor level was decreased in tumors, whereas transforming growth factor (TGF)-β1 level was elevated, and MDSCs, one of the sources of TGF-β1, were also increased. We speculate that hypoxia and TGF-β1 are responsible for the increased CSC number in A549 transplantation tumors. By using cobalt chloride to mimic hypoxia and human recombinant TGF-β1 in vitro, we found that hypoxia and TGF-β1can indeed enhance the stemness of A549 cells. In addition, the inductive effect of hypoxia is stronger than TGF-β1, and the combination of both is stronger than either alone, which is first report of such a finding, to our knowledge.

Conclusions

Increased TGF-β1 and strengthened hypoxia in A549 transplantation tumors, as a result of ES therapy, cooperatively increase proportion of CSCs that are involved in ES resistance which was revealed by failure of tumor volume repression after continuously treatment with ES for 12 days.
  相似文献   

15.
G X Yu  A L Bush  R P Wise 《Génome》1996,39(1):155-164
The colinearity of markers linked with resistance loci on linkage group A of diploid oat, on the homoeologous groups in hexaploid oat, on barley chromosome 1H, and on homoeologous maize chromosomes was determined. Thirty-two DNA probes from homoeologous group 1 chromosomes of the Gramineae were tested. Most of the heterologous probes detected polymorphisms that mapped to linkage group A of diploid oat, two linkage groups of hexaploid oat, barley chromosome 1H, and maize chromosomes 3, 6, and 8. Many of these DNA markers appeared to have conserved linkage relationships with resistance and prolamin loci in Avena, Hordeum, and Zea mays. These resistance loci included the Pca crown rust resistance cluster in diploid oat, the R203 crown rust resistance locus in hexaploid oat, the Mla powdery mildew resistance cluster in barley, and the rp3, wsm1, wsm2, mdm1, ht2, and htn1 resistance loci in maize. Prolamin encoding loci included Avn in diploid oat and Hor1 and Hor2 in barley. A high degree of colinearity was revealed among the common RFLP markers on the small chromosome fragments among these homoeologous groups. Key words : disease resistance, colinearity, Gramineae, cereals.  相似文献   

16.
17.
Arsenic is a toxic element that exists in two major inorganic forms, arsenate and arsenite. A number of bacteria have been shown to resist arsenic exposure, and even more bacteria appear to possess the genes for arsenic resistance. In this study, the numbers of culturable arsenate-resistant bacteria present in water at three coastal sites in the Lake Pontchartrain estuary, Louisiana, was determined. Despite insignificant (less than 1.33 μM) levels of arsenic in this system, 20–50% of the viable count of bacteria showed appreciable arsenate resistance, suggesting that arsenic-resistant bacteria are common and widespread. A diverse array of arsenate-resistant isolates was obtained, with 16S rRNA sequence analysis indicating 37 different bacterial strains, representing six major bacterial groups. Many of these isolates were affiliated with groups of bacteria that have been poorly characterized in terms of arsenic resistance, such as the Betaproteobacteria or Flavobacteria. Some isolates were capable of tolerating very high (>100 mM) levels of arsenate, although arsenite resistance was generally much lower. The results suggest that arsenic-resistant bacteria are common, even in environments with insignificant arsenic contamination, and that many different groups of aquatic bacteria show appreciable arsenic resistance.  相似文献   

18.
Waltho, Judith A. (University of Melbourne, Victoria, Australia), and B. W. Holloway. Suppression of fluorophenylalanine resistance by mutation to streptomycin resistance in Pseudomonas aeruginosa. J. Bacteriol. 92:35-42. 1966.-Fluorophenylalanine-resistant mutants (fpa-r) of Pseudomonas aeruginosa have been isolated. By cotransduction analysis, the mutations were shown to have at least two chromosomal locations. One locus (fpaA) showed linkage to three other markers, str, try-3bi, and arg-3, and the order of these four linked markers was found to be try-3bi, arg-3, fpaA, str. The linkage relationships of the other fpa loci are not yet known. The phenotypic expression of resistance at the fpaA locus can be suppressed by mutation of the str locus from str-s to str-r, whereas that at an unlinked fpa locus cannot.  相似文献   

19.
20.
Mutants, resistant to neamine and spectinomycin, have been isolated from S. typhimurium and S. dublin highly virulent strains. The neamine-resistant mutants can be divided into 3 classes in accordance with their sensitivity to streptomycin: sensitive, resistant to low and high concentrations of this antibiotic. The transduction analysis with the use of bacteriophage P 22 has revealed that the spectinomycin-resistant mutations under study are spc A mutations, while the mutations leading to resistance to neamine in class Near Strr 500 are nea B mutations. The mutation leading to resistance to spectinomycin (spc A) has been found to produce no changes in the virulence of salmonellae in the intraperitoneal infection of mice. The mutations leading to resistance to neamine and streptomycin (nea B and str A) have been found to decrease virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号