首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
A modeling approach was used to quantify the kinetic behavior of a Yarrowia lipolytica strain capable of producing significant lipid amounts when cultivated on industrial fats. Biomass and cellular lipid evolution were successfully simulated, while the optimized parameter values were similar to those experimentally measured. The maximum specific formation rate of fat-free biomass seemed unaffected by the substrate fatty acid composition. On the contrary, the maximum concentration of lipid accumulated inside the yeast cell, as well as the maximum specific accumulation rate of cellular lipids, was favored in high stearic acid content media. The microorganism presented the tendency to degrade its accumulated lipids, although remarkable substrate fat amounts remained unconsummated in the culture medium. This degradation slowly occurred in the yeast cell as the specific rate of the intracellular carbon pool (storage lipid consumption) was significantly lower compared with that of the extracellular carbon pool (substrate fat). However, the fat-free biomass yield on storage lipids (g of fat-free biomass formed per g of storage lipids consumed) was higher than the one on the substrate (g of fat-free biomass formed per g of medium fat consumed). Received: 26 June 2002 / Accepted: 22 July 2002  相似文献   

2.
Oleaginous micro-organisms (yeasts, moulds), in culture media having the carbon source as limited factor, degrade reserve lipids and produce new biomass, after the onset of carbon exhaustion from the medium. In this paper the process of lipid accumulation-degradation in oleaginous micro-organisms, growing on a vegatable oil was simulated. The model was integrated with 4 different methods and the parameters were optimised with the least squares method. It was found that the degradation of endocellular carbon pool is a very slow process characterised, however, by a good yield in fat-free biomass. Low values of the specific growth rates of the fat-free microbial mass, both from consumption of extra cellular and endocellular carbon pools, favourite the production of microbial lipid. The maximum of the specific rate of lipid accumulation is positively affected by the low values of the specific growth rate of the fat-free microbial mass from consumption of extra cellular carbon pool, but remained unaffected by the specific growth rate of the fat-free microbial mass from consumption of endocellular carbon pool. On the other hand, lipid production and specific rate of lipid accumulation are positively influenced by the high values of the specific rate of storage lipid formation. In conclusion, this numerical model can be used in the laboratory as pilot for planing further experimental work.  相似文献   

3.
The growth of an oleaginous strain of Yarrowia lipolytica on an industrial fat composed of saturated free fatty acids (stearin) was studied. Lipid accumulation during primary anabolic growth was critically influenced by the medium pH and the incubation temperature. This process was independent of the nitrogen concentration in the culture medium, but was favored at a high carbon substrate level and at a low aeration rate. At pH 6 and a temperature of 28-33 degrees C, 9-12 g/l of dry biomass was produced, whereas significant quantities of lipids were accumulated inside the yeast cells (0.44-0.54 g of lipid per gram of biomass). The strain showed the tendency to degrade its storage lipids, although significant amounts of substrate fat, rich in stearic acid, remained unconsumed in the culture medium. Y. lipolytica presented a strong fatty acid specificity. The fatty acids C12:0, C14:0, and C16:0 were rapidly incorporated and mainly used for growth needs, while C18:0 was incorporated with reduced rates and was mainly accumulated as storage material. Reserve lipids, principally composed of triacylglycerols (55% w/w of total lipids) and free fatty acids (35% w/w), were rich in stearic acid (80% w/w), while negligible amounts of unsaturated fatty acids were detected. When industrial glycerol was used as co-substrate, together with stearin, unsaturated fatty acid concentration in the reserve lipid increased.  相似文献   

4.
Yarrowia lipolytica LGAM S(7)1 presented remarkable growth on industrial glycerol used as sole carbon substrate. Nitrogen-limited flask cultures were accompanied by restricted synthesis of reserve lipid, whilst amounts of citric acid were produced extracellularly. On the contrary, high amounts of reserve lipid (up to 3.5 g/l, 43% w/w of lipids in dry biomass) were produced in highly aerated continuous cultures. Lipid production was favoured at low specific dilution rates whilst fat-free material yield increased over the whole range of D (h(-1)). The maximum volumetric productivity obtained was 0.12 g lipid/1 h. Storage lipid composition did not present remarkable changes in the specific dilution rates tested. Oleate and linoleate were the dominant cellular fatty acids.  相似文献   

5.
Lipid accumulation of Candida 107, grown at dilution rates from 0.03 to the maximum of 0.21/h, with carbon, nitrogen, phosphate, and magnesium limitations in a chemostat, was maximal at about 40% (wt/wt) with nitrogen-limited medium at a dilution rate of 0.06/h, giving an efficiency of substrate conversion of 22 g of lipid per g of glucose consumed. At higher dilution rates the lipid content decreased. With carbon-limited growth, the highest lipid content (14%, wt/wt) was at the maximum dilution rate. High lipid contents also occurred with phosphate + nitrogen as double limitations of growth, with the lipid content of the yeast (about 35%, wt/wt) continuing to be near maximum at dilution rates also near maximum (0.17/h), thus giving the highest specific rate of lipid formation of any growth conditions (0.59 g of lipid/g of yeast per h). However, the efficiency of substrate utilization was only 5.2 g of lipid formed per 100 g of glucose consumed. The composition of the fatty acyl residues within the lipid remained constant over many weeks if the steady-state conditions remained unchanged. With carbon-limited growth, the degree of unsaturation of the fatty acids markedly decreased as the dilution rate was increased, but with nitrogen limitation the reverse trend was seen. In all cases, linoleic and oleic acids were the principal fatty acyl residues affected, and their relative proportions always varied in opposite directions. When magnesium was a limiting nutrient, there was a considerable increase in the proportion of myristic acid produced within the lipid. Neutral lipids (predominantly triglycerides) varied from 66 to 92% of the total lipid from carbon- and nitrogen-limited growth; phospholipids (varying from 2 to 25%) were highest in nitrogen-limited growth. The fatty acyl residues within each lipid fraction showed the same variations with changing growth rates.  相似文献   

6.
Aims: In this study, we have investigated the biochemical behaviour of Aspergillus sp. (five strains) and Penicillium expansum (one strain) fungi cultivated on waste cooking olive oil. The production of lipid‐rich biomass was the main target of the work. In parallel, the biosynthesis of other extracellular metabolites (organic acids) and enzyme (lipase) and the substrate fatty acid specificity of the strains were studied. Methods and Results: Carbon‐limited cultures were performed on waste oil, added in the growth medium at 15 g l?1, and high biomass quantities were produced (up to c. 18 g l?1, conversion yield of c. 1·0 g of dry biomass formed per g of fat consumed or higher). Cellular lipids were accumulated in notable quantities in almost all cultures. Aspergillus sp. ATHUM 3482 accumulated lipid up to 64·0% (w/w) in dry fungal mass. In parallel, extracellular lipase activity was quantified, and it was revealed to be strain and fermentation time dependent, with a maximum quantity of 645 U ml?1 being obtained by Aspergillus niger NRRL 363. Storage lipid content significantly decreased at the stationary growth phase. Some differences in the fatty acid composition of both cellular and residual lipids when compared with the initial substrate fat used were observed; in various cases, cellular lipids more saturated and enriched with arachidic acid were produced. Aspergillus strains produced oxalic acid up to 5·0 g l?1. Conclusions: Aspergillus and Penicillium strains are able to convert waste cooking olive oil into high‐added‐value products. Significance and Impact of the Study: Increasing fatty wastes amounts are annually produced. The current study provided an alternative way of biovalourization of these materials, by using them as substrates, to produce added‐value compounds.  相似文献   

7.
Aims: To investigate the effect of organic nitrogen on lipogenesis during growth of Cunninghamella echinulata on tomato waste hydrolysate (TWH) media. Methods and Results: Cunninghamella echinulata grown on a TWH medium rapidly took up glucose and produced large amounts of lipids. However, when some quantities of the organic nitrogen were removed from TWH (by acid followed by alkaline precipitation of proteins) the uptake of glucose was dramatically reduced and large quantities of fungal biomass having low lipid content were produced. Nevertheless, when glycerol was used as carbon source instead of glucose, the uptake rate as well as the biomass production and the lipid accumulation processes were unaffected by the TWH organic nitrogen removal. Finally, when the fungus was grown on a glucose supplemented TWH medium that contained no assimilable organic nitrogen (after further precipitation of proteins with methanol), the produced biomass contained non-negligible quantities of lipids, although glucose uptake remained low. Lipid analysis showed that the produced lipids comprised mainly of neutral lipids, which were preferentially consumed during lipid turnover. Lipid production on the original TWH medium having glucose as carbon source was 0·48 g of lipid per gram of dry biomass, corresponding to 8·7 g of lipid per litre of growth medium. The produced lipids contained 11·7%γ-linolenic acid (GLA), hence the GLA yield was more than 1 g l−1. Conclusions: Organic nitrogen compounds found in TWH favour glucose (but not glycerol) uptake and lipid accumulation in C. echinulata. Significance and Impact of the Study: Agro-industrial wastes containing organic nitrogen, such as tomato waste, are produced in vast amounts causing severe environmental problems. These wastes could be used as fermentation feedstock to produce microbial lipids.  相似文献   

8.
Microthrix parvicella, cultivated in a medium with Tween 80 and Casamino acids, utilized only the oleic acid moiety of Tween 80 as carbon and energy source. The cell yield from Tween 80 was about 0.32 g dry weight of cells per g of Tween 80 consumed. As only the oleic acid moiety of Tween 80 was utilized, the cell yield from oleic acid was 1.3 g dry weight of cells per g oleic acid consumed. The amount of carbon produced as CO2 was less than 30% of the oleic acid-carbon and this low value was in agreement with the high cell yield. In batch culture M. parvicella stored large amounts of lipid material during the early growth phase. The fatty acids of the lipid globules were similar to the fatty acids supplied as carbon source. The percentage composition of the biomass changed to give C/N percentage ratios of about 15 during the early growth phase due to the high concentration of internal lipids and the low concentration of protein. The growth rate in batch culture was about 0.016 h-1 but was affected by the concentration of Casamino acids in the medium.  相似文献   

9.
In the present report, the effect of glucose and stearin (substrate composed by saturated free-fatty acids) on the production of biomass, reserve lipid, and citric acid by Yarrowia lipolytica ACA-DC 50109 was investigated in nitrogen-limited cultures. Numerical models that were used in order to quantify the kinetic behavior of the above Yarrowia lipolytica strain showed successful simulation, while the optimized parameter values were similar to those experimentally measured and the predictive ability of the models was satisfactory. In nitrogen-limited cultures in which glucose was used as the sole substrate, satisfactory growth and no glucose inhibition occurred, although in some cases the initial concentration of glucose was significantly high (150 g/l). Citric acid production was observed in all trials, which was in some cases notable (final concentration 42.9 g/l, yield 0.56 g per g of sugar consumed). The concentration of unsaturated cellular fatty acids was slightly lower when the quantity of sugar in the medium was elevated. In the cases in which stearin and glucose were used as co-substrates, in spite of the fact that the quantity of cellular lipid inside the yeast cells varied remarkably (from 0.3 to 2.0 g/l – 4 to 20% wt/wt), de novo fatty acid biosynthesis was observed. This activity increased when the yeast cells assimilated higher sugar quantities. The citric acid produced was mainly derived from the catabolism of sugar. Nevertheless, citric acid yield on sugar consumed and citrate specific production rate, as evaluated by the numerical model, presented substantially higher values in the fermentation in which no fat was used as glucose co-substrate compared with the cultures with stearin used as co-substrate.  相似文献   

10.
Mortierella isabellina cultivated in nitrogen-limited media presented remarkable cell growth (up to 35.9 g/l) and high glucose uptake even with high initial sugar concentrations (e.g. 100 g/l) in media. After nitrogen depletion, significant fat quantities were accumulated inside the fungal mycelia (50-55%, wt/wt oil in dry biomass), resulting in a notable single cell oil production of 18.1 g/l of culture medium. Total dry biomass and lipid yields presented greatly increased values (0.34 and 0.17 g respectively per gram of glucose consumed). The microbial lipid produced contained gamma-linolenic acid (GLA) at a concentration of 3.5+/-1.0%, wt/wt, which corresponded to 16-19 mg GLA per gram of dry microbial mass and a maximum concentration of 0.801 g GLA per liter of culture medium.  相似文献   

11.
Summary Lipid production of the oleaginous yeastApiotrichum curvatum was studied in wheypermeate to determine optimum operation conditions in this medium. Studies on the influence of the carbon to nitrogen ratio (C/N-ratio) of the growth medium on lipid production in continuous cultures demonstrated that cellular lipid content in wheypermeate remained constant at 22% of the cell dry weight up to a C/N-ratio of about 25. The maximal dilution rate at which all lactose is consumed in wheypermeate with excess nitrogen was found to be 0.073 h-1. At C/N-ratios higher than 25–30 lipid content gradually increased to nearly 50% at C/N=70 and the maximal obtainable dilution rate decreased to 0.02 h-1 at C/N=70. From these studies it could be derived that maximal lipid production rates can be obtained at C/N-ratios of 30–35 in wheypermeate. Since the C/N-ratio of wheypermeate normally has a value between 70 and 101, some additional nitrogen is required to optimize the lipid production rate. Lipid production rates ofA. curvatum in wheypermeate were compared in four different culture modes: batch, fed-batch, continuous and partial recycling cultures. Highest lipid production rates were achieved in culture modes with high cell densities. A lipid production rate of nearly 1 g/l/h was reached in a partial recycling culture. It was calculated that by using this cultivation technique lipid production rates of even 2.9 g/l/h may be reached when the supply of oxygen can be optimized.Nomenclature C/N-ratio carbon to nitrogen ratio of the growth medium (g/g) - C/Ncrit C/N-ratio at which there is just enough nitrogen to allow all carbon source to be converted to biomass - D dilution rate=volume of incoming medium per unit time/volume of medium in the culture vessel (h-1) - Dmax maximum dilution rate (h-1) - DW cell dry weight - L lipid yield (g storage lipid/g carbon source) - specific growth rate (h-1) - max maximum specific growth rate (h-1) - QL lipid production rate (g/l/h) - Yi molecular fraction of carbon substrate that is converted to storage carbohydrate (C-mol/C-mol) - Yls maximal amount of storage lipid that can be produced per mol carbon source (C-mol/C-mol)  相似文献   

12.
Fatty acid composition of the lipids produced by four strains ofCandida species was studied. Oleic acid was the principal fatty acid. Cellular lipids ofCandida sp. andC. pulcherima were rich in palmitic acid. Lipids fromC. lipolytica contained a significant amount of palmitoleic acid, whereasC. farinosa produced oil rich in stearis and α-linolenic acid. Analysis of cellular lipids ofCandida sp. andC. pulcherima during growth on a nitrogen-limited medium showed that oils accumulated in the exponential growth phase were more unsaturated than those accumulated in the decelerating and stationary phases. In a chemostat culture,Candida sp. accumulated about 40% of lipid. The specific rate of lipid formation, at a dilution rate ofD=0.09/h, was 35 mg of lipid per g of biomass per h and the yield of lipid on glucose was 11.4%.  相似文献   

13.
A balance of electrons available from acetic acid consumed for growth and oxygen uptake in the aerobic- and photoheterotrophic growth of Rhodopseudomonas sphaeroides S on acetate-minimal medium could be realized the same as in the carbon balance. The unmeasured amounts of yeast extract consumed by the cells grown on propionate–yeast extract media were indirectly estimated from the balance equation of electrons available from carbon substrates. The specific consumption rate of the yeast extract increased with an increase in propionate consumption rate in aerobic and photoheterotrophic cultures. Growth yields from acetic acid and from propionic acid plus yeast extract were calculated on the electron level, i.e., YX/ave g cell produced/equivalent electrons available from substrate consumed. YX/ave values were 5.0 to 5.8 g cell/ave in photoheterotrophic cultures and 2.7 to 3.6 in aerobic–heterotrophic cultures regardless of different medium compositions.  相似文献   

14.
圆红冬孢酵母发酵菊芋块茎产油脂的研究   总被引:6,自引:0,他引:6  
研究了圆红冬孢酵母Y4发酵菊芋块茎,菊芋品种及其处理方法对发酵产油的影响。结果表明,菊芋浸提汁、酸水解液或菊芋浆均可直接被圆红冬孢酵母Y4利用,发酵积累油脂,但白皮菊芋比紫皮菊芋更有利于油脂发酵。发酵菊芋浸提汁或酸水解液时,无需添加外源营养物,干菌体油脂含量可达到40%(w/w);发酵菊芋浆时,白皮菊芋转化率达到12.1 g油/100 g去皮干菊芋。菊芋油脂发酵产品主要以16碳和18碳系脂肪酸为主,与常规植物油的脂肪酸组成相似,可作为制备生物柴油的新型替代原料。  相似文献   

15.
In the present report, crude glycerol, waste discharged from bio‐diesel production, was used as carbon substrate for three natural Yarrowia lipolytica strains (LFMB 19, LFMB 20 and ACA‐YC 5033) during growth in nitrogen‐limited submerged shake‐flask experiments. In media with initial glycerol concentration of 30 g/L, all strains presented satisfactory microbial growth and complete glycerol uptake. Although culture conditions favored the secretion of citric acid (and potentially the accumulation of storage lipid), for the strains LFMB 19 and LFMB 20, polyol mannitol was the principal metabolic product synthesized (maximum quantity 6.0 g/L, yield 0.20–0.26 g per g of glycerol consumed). The above strains produced small quantities of lipids and citric acid. In contrast, Y. lipolytica ACA‐YC 5033 produced simultaneously higher quantities of lipid and citric acid and was further grown on crude glycerol in nitrogen‐limited experiments, with constant nitrogen and increasing glycerol concentrations (70–120 g/L). Citric acid and lipid concentrations increased with increment of glycerol; maximum total citric acid 50.1 g/L was produced (yield 0.44 g per g of glycerol) while simultaneously 2.0 g/L of fat were accumulated inside the cells (0.31 g of lipid per g of dry weight). Cellular lipids were mainly composed of neutral fraction, the concentration of which substantially increased with time. Moreover, in any case, the phospholipid fraction was more unsaturated compared with total and neutral lipids, while at the early growth step, microbial lipid was more rich in saturated fatty acids (e.g. C16:0 and C18:0) compared with the stationary phase.  相似文献   

16.
Microalgal lipids may be a more sustainable biodiesel feedstock than crop oils. We have investigated the potential for using the crude glycerol as a carbon substrate. In batch mode, the biomass and lipid concentration of Chlorella protothecoides cultivated in a crude glycerol medium were, respectively, 23.5 and 14.6 g/l in a 6-day cultivation. In the fed-batch mode, the biomass and lipid concentration improved to 45.2 and 24.6 g/l after 8.2 days of cultivation, respectively. The maximum lipid productivity of 3 g/l day in the fed-batch mode was higher than that produced by batch cultivation. This work demonstrates the feasibility of crude biodiesel glycerol as an alternative carbon substrate to glucose for microalgal cultivation and a cost reduction of carbon substrate feed in microalgal lipid production may be expected.  相似文献   

17.
Propene-grown Xanthobacter sp. strain Py2 cells can degrade trichloroethylene (TCE), but the transformation capacity of such cells was limited and depended on both the TCE concentration and the biomass concentration. Toxic metabolites presumably accumulated extracellularly, because the fermentation of glucose by yeast cells was inhibited by TCE degradation products formed by strain Py2. The affinity of the propene monooxygenase for TCE was low, and this allowed strain Py2 to grow on propene in the presence of TCE. During batch growth with propene and TCE, the TCE was not degraded before most of the propene had been consumed. Continuous degradation of TCE in a chemostat culture of strain Py2 growing with propene was observed with TCE concentrations up to 206 microns in the growth medium without washout of the fermentor occurring. At this TCE concentration the specific degradation rate was 1.5 nmol/min/mg of biomass. The total amount of TCE that could be degraded during simultaneous growth on propene depended on the TCE concentration and ranged from 0.03 to 0.34g of TCE per g of biomass. The biomass yield on propene was not affected by the cometabolic degradation of TCE.  相似文献   

18.
Cell growth, lipid accumulation and cellular lipid composition of Yarrowia lipolytica growing on mixtures of industrial fats containing stearic, oleic, linoleic and palmitic acid have been studied. During growth, the strain incorporated oleic and linoleic acids more rapidly than the saturated fatty acids. Relatively high lipid accumulation (up to 0.44 g of lipids per g of dry matter) was observed when stearic acid was included in the culture medium. In contrast, substrates rich in oleic acid did not favor cellular lipid accumulation. The accumulated lipids, mainly composed of triacylglycerols (45-55% w/w), demonstrated a different total fatty acid composition compared with that of the substrate; in all cases, the microorganism showed the unusual capacity to increase its cellular stearic acid level, even if this fatty acid was not found in high concentrations in the substrate. This permitted the synthesis of interesting lipid profiles with high percentages of stearic acid and non-negligible percentages of palmitic and oleic acid, with a composition resembling that of cocoa-butter.  相似文献   

19.
A mathematical model was constructed to describe the influence of the carbon to nitrogen ratio (C/N-ratio) of the growth medium on lipid production by oleaginous yeasts. To test this model and to determine some relevant model parameters, the oleaginous yeast Apiotrichum curvatum ATCC 20509 was grown in continuous cultures at various C/N-ratios and dilution rates. It appeared that when nitrogen is limiting for the formation of biomass, the remaining glucose can be converted to storage carbohydrate and storage lipid. No clear dependence of carbohydrate yield on the C/N-ratio could be demonstrated, but lipid yield increased gradually with increasing C/N-ratios.The maximal dilution rate for lipid producing yeast cells appeared to be optimal at relatively low C/N-ratios. It can be concluded that the experimental results fitted well with the mathematical model. By using this model, lipid yield and lipid production rate can be calculated at any C/N-ratio of the growth medium and optimum operation conditions can be predicted for the production of microbial lipids.  相似文献   

20.
An unsaturated fatty acid auxotroph of the oleaginous yeast Apiotrichum curvatum, named UfaM3, blocked in the conversion of stearic to oleic acid was cultivated in single-stage continuous culture. The influence of consumed carbon to nitrogen ratios (C/N ratios, g g–1) obtained at various dilution rates (D) on fatty acid (FA) accumulation and its profiles were studied. In continuous culture in N-limited medium a maximum FA accumulation of 45.6% (g g–1 of dry biomass) was obtained at an optimal D of 0.049 h–1, recording an efficiency of substrate conversion of 0.48 g g–1 and 0.22 g g–1 for biomass and lipids, respectively. The quality of lipid approached cocoa butter at an optimal C/N ratio of between 20 and 30. The C/N ratio in the incoming medium was 38.5 g g–1 with 30 g l–1 of glucose and both C and N sources were completely consumed at a critical D of 0.07 h–1. The stability of the mutant was demonstrated in the steady-state conditions of the chemostat with regard to the FA composition of its lipids. Correspondence to: P. J. Blanc  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号