首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility of controlling the development of microbial communities was investigated on the basis of experimentally determined requirements for basic nutrients in R, S, and M dissociants of Pseudomonas aeruginosa. On media with the limitation conditions present on the basis of the predictions of a mathematical model, exhaustion of glucose was experimentally confirmed for all monocultures and mixed cultures, as well as balanced consumption of glucose, nitrogen, and phosphorus by the R dissociant at the corresponding initial medium composition. The experimentally determined composition of mixed cultures was found to conform to the ones calculated using the mathematical model. The data obtained suggest the possibility of cyclic consumption of phosphorus by P. aeruginosa.  相似文献   

2.
Activity of Pseudomonas aeruginosa in biofilms: Steady state   总被引:4,自引:0,他引:4  
Aerobic glucose metabolism by Pseudomonas aeruginosa in steady-state biofilms at various substrate loading rates and reactor dilution rates was investigated. Variables monitored were substrate (glucose), biofilm cellular density, biofilm extracellular polymeric substance (EPS) density, and suspended cellular and EPS concentrations. A mathematical model developed to describe the system was compared to experimental data. Intrinsic yield and rate coefficients included in the model were obtained from suspended continuous culture studies of glucose metabolism by P. aeruginosa. Experimental data compared well with the mathematical model, suggesting that P. aeruginosa does not behave differently in steady-state biofilm cultures, where diffusional resistance is negligible, than in suspended cultures. This implies that kinetic and stoichiometric coefficients for P. aeruginosa derived in suspended continuous culture can be used to describe steady-state biofilm processes.  相似文献   

3.
Bacteria in natural habitats only occur in consortia together with various other species. Characterization of bacterial species, however, is normally done by laboratory testing of pure isolates. Any interactions that might appear during growth in mixed-culture are obviously missed by this approach. Existing experimental studies mainly focus on two-species mixed cultures with species specifically chosen for their known growth characteristics, and their anticipated interactions. Various theoretical mathematical studies dealing with mixed cultures and possible interspecies effects exist, but often models cannot be validated due to a lack of experimental data. Here, we present a concept for the identification of interspecies effects in mixed cultures with arbitrary and unknown single-species properties. Model structure and parameters were inferred from single-species experiments for the reproduction of mixed-culture experiments by simulation. A mixed culture consisting of the three-species Pseudomonas aeruginosa, Burkholderia cepacia, and Staphylococcus aureus served as a model system. For species-specific enumeration a quantitative terminal restriction length polymorphism (qT-RFLP) assay was used. Based on models fitted to single-species cultivations, the outcome of mixed-culture experiments was predicted. Deviations of simulation results and experimental findings were then used to design additional single-cell experiments, to modify the corresponding growth kinetics, and to update model parameters. Eventually, the resulting mixed-culture dynamics was predicted and compared again to experimental results. During this iterative cycle, it became evident that the observed coexistence of P. aeruginosa and B. cepacia in mixed-culture chemostat experiments cannot be explained on the basis of glucose as the only substrate. After extension of growth kinetics, that is, for use of amino acids as secondary substrates, mixed-culture simulations represented the experimental findings very well. According to the model structure, as motivated by single-species experiments, the growth of P. aeruginosa and B. cepacia on glucose and amino acids could be assumed to be independent of each other. In contrast, both substrates are taken up simultaneously by S. aureus.  相似文献   

4.
The population composition of polycultures of Pseudomonas aeruginosa dissociants (R + M and R + S + M) developing on media with various contents and ratios of nitrogen and phosphorus has been studied. Irrespective of its proportion (10 to 90%) in the inoculum, the R variant accounted for 65 to 84% of the whole population of linear-phase and stationary-phase binary cultures of R and M dissociants, which differ in terms of energy metabolism and nutritional requirements. After prolonged cultivation, the population in the binary culture contained only R cells (100%), which are characterized by minimum requirements with respect to the main biogenic elements. These data agree with the predictive data of model studies and can be attributed to regulation of the population composition of bacterial cultures by trophic factors. It was established that the proportion of M cells, which are distinguished by maximum nutrient requirements and enhanced stability, increased during two developmental stages of the Ps. aeruginosa polycultures (R + M and R + S + M): the lag phase and the decay stage. This result cannot be due to the influence of trophic factors and presumably results from changes in the levels of autoregulatory factors (anabiosis autoinducers) involved in stress resistance and plausibly in the adaptive interconversion of dissociants upon transfer to a new medium (during the lag phase) and under starvation conditions (at the onset of the decay phase).  相似文献   

5.
Hinton A  Hume ME 《Anaerobe》1995,1(2):121-127
A Veillonella species and Bacteroides fragilis were isolated from the cecal contents of adult chickens. When growth on an agar medium supplemented with 0.4% glucose and adjusted to pH 6.5, mixed cultures containing Veillonella and B. fragilis inhibited the growth of Salmonella typhimurium; Salmonella enteritidis, Escherichia coli 0157:H7 and Pseudomonas aeruginosa. Decreasing the glucose concentration of the agar decreased the inhibitory activity of the mixed culture. Mixed cultures grown on agar media supplemented with 0.5% glucose and adjusted to pH 6.5, 7.0 or 7.5 also inhibited the growth of S. typhimurium, S. enteritidis, E. coli 0157:H7 and P. aeruginosa. However, increasing the pH of the agar decreased the inhibitory activity of the mixed culture. Pure cultures of Veillonella or B. fragilis did not inhibit the growth of S. typhimurium, S. enteritidis, E. coli 0157:H7 or P. aeruginosa on any of the agar supplemented with different concentrations of glucose or on any of the agar adjusted to different pH levels. The inhibitory activity of the mixed culture was correlated with the concentration of volatile fatty acids that were formed as B. fragilis metabolized glucose to produce succinate and acetate and as the succinate produced by B. fragilis was decarboxylated by Veillonella to produce propionate.  相似文献   

6.
Growth dynamics of Pseudomonas aeruginosa, Burkholderia cepacia, and Staphylococcus aureus in a batch and chemostat, were investigated as a laboratory model system for persistent infections in cystic fibrosis. Most species-specific enumeration methods for mixed cultures are laborious or only qualitative, and therefore impede generation of quantitative data required for validation of mathematical models. Here, a quantitative T-RFLP method was evaluated and applied for specific and absolute cell number enumerations. The method was tested to be unbiased by quantitative sample composition and allowed reproducible enumerations of mixed cultures. For assay validation, samples of defined concentration containing one, two or three species were quantified. Logarithmically transformed absolute cell numbers of single-species dilutions were linear within a lower working range of 10(4)-10(6) cfu/mL (species-dependent) and an upper working range of 10(10) cfu/mL. Quantifications of single species (10(6)-10(10) cfu/mL) spiked with one or two other species agreed well with single species controls. Differences between slopes of first order linear regression of spiked and pure dilution series were insignificant. Coefficient of variation of defined mixed replicates was maximum 4.39%, of a three-species chemostat it was maximum 1.76%. T-RFLP monitoring of pure cultures in parallel shake flasks and of a three-species mixed chemostat gave very consistent results. Coexistence of at least two species after a time period equivalent to more than 33 volume exchanges was found. This result was not predicted from pure cultures clearly indicating the need for quantitative mixed culture experiments to better understand microbial growth dynamics and for mathematical model validation.  相似文献   

7.
8.
The effect of glucose, nitrate, and phosphate on the stationary-phase growth characteristics of R, S, and M dissociants of the hydrocarbon-oxidizing strain P. aeruginosa K-2 was studied. The optimal concentrations of glucose and phosphate providing for at least 90% of the maximal culture density were found to be 2-7% glucose and 0.02-0.12% phosphate. The main factor that determined the proportion of dissociants in bacterial populations was the initial concentration of phosphate. The fraction of R dissociant in populations increased linearly with the concentration of glucose and varied nonlinearly with the concentration of phosphate in the growth medium. The fraction of M dissociant depended solely on the concentration of phosphate in a manner inverse to that typical of R dissociant. In glucose-deficient media containing sufficient amounts of phosphorus, S dissociant prevailed over R dissociant.  相似文献   

9.
Fed-batch cultivation of Azotobacter vinelandii 21was optimized for biosurfactant production. Optimization of feed-rate time profile and concentration of nutrient medium components in feeding solution is based on a hybrid mathematical model consisting of mass-balance equations for biomass, biosurfactant, volume of cultural liquid and substrate components: glucose, ammonia nitrogen and phosphate phosphorus. The rate of cultural liquid emulsification activity growth as well as the rates of ammonia nitrogen and phosphate phosphorus consumption is modelled by means of artificial neural network, while the rates of the other biochemical transformations are modelled by adequate kinetic relationships.  相似文献   

10.
The influence of a H(2)-utilizing organism, Vibrio succinogenes, on the fermentation of limiting amounts of glucose by a carbohydrate-fermenting, H(2)-producing organism, Ruminococcus albus, was studied in continuous cultures. Growth of V. succinogenes depended on the production of H(2) from glucose by R. albus. V. succinogenes used the H(2) produced by R. albus to obtain energy for growth by reducing fumarate in the medium. Fumarate was not metabolized by R. albus alone. The only products detected in continuous cultures of R. albus alone were acetate, ethanol, and H(2). CO(2) was not measured. The only products detected in the mixed cultures were acetate and succinate. No free H(2) was produced. No formate or any other volatile fatty acid, no succinate or other dicarboxylic acids, lactate, alcohols other than ethanol, pyruvate, or other keto-acids, acetoin, or diacetyl were detected in cultures of R. albus alone or in mixed cultures. The moles of product per 100 mol of glucose fermented were approximately 69 for ethanol, 74 for acetate, 237 for H(2) for R. albus alone and 147 for acetate and 384 for succinate for the mixed culture. Each mole of succinate is equivalent to the production of 1 mol of H(2) by R. albus. Thus, in the mixed cultures, ethanol production by R. albus is eliminated with a corresponding increase in acetate and H(2) formation. The mixed-culture pattern is consistent with the hypothesis that nicotinamide adenine dinucleotide (reduced form), formed during glycolysis by R. albus, is reoxidized during ethanol formation when R. albus is grown alone and is reoxidized by conversion to nicotinamide adenine dinucleotide and H(2) when R. albus is grown with V. succinogenes. The ecological significance of this interspecies transfer of H(2) gas and the theoretical basis for its causing changes in fermentation patterns of R. albus are discussed.  相似文献   

11.
A dynamic model for plant cell metabolism was used as a basis for a rational analysis of plant production potential in in vitro cultures. The model was calibrated with data from 3-L bioreactor cultures. A dynamic sensitivity analysis framework was developed to analyse the response curves of secondary metabolite production to metabolic and medium perturbations. Simulation results suggest that a straightforward engineering of cell metabolism or medium composition might only have a limited effect on productivity. To circumvent the problem of the dynamic allocation of resources between growth and production pathways, the sensitivity analysis framework was used to assess the effect of stabilizing intracellular nutrient concentrations. Simulations showed that a stabilization of intracellular glucose and nitrogen reserves could lead to a 116% increase in the specific production of secondary metabolites compared with standard culture protocol. This culture strategy was implemented experimentally using a perfusion bioreactor. To stabilize intracellular concentrations, adaptive medium feeding was performed using model mass balances and estimations. This allowed for a completely automated culture, with controlled conditions and pre-defined decision making algorithm. The proposed culture strategy leads to a 73% increase in specific production and a 129% increase in total production, as compared with a standard batch culture protocol. The sensitivity analysis on a mathematical model of plant metabolism thus allowed producing new insights on the links between intracellular nutritional management and cell productivity. The experimental implementation was also a significant improvement on current plant bioprocess strategies.  相似文献   

12.
When E. coli ML 30 is grown in batch culture on a mineral salt medium containing a mixed carbon source of glucose and pyruvate, there is no sequential utilization of the carbon sources. The consumption of glucose and pyruvate takes place simultaneously with reciprocal influence (inhibition) on rates of substrate uptake. The specific growth rate is greater than mupmax for pyruvate but smaller than musmax for glucose. In the paper three cases of kinetics of growth and of substrate consumption at several combinations of initial substrate concentrations are considered. A mathematical model is proposed and investigated. The model allows to describe the growth on glucose or on pyruvate not only as singular carbon sources, but also as a mixed carbon source with reciprocal inhibition on rates of substrate uptake. By data fitting parameters of growth and substrate consumption were found.  相似文献   

13.
The effect of lowered concentrations of carbon, nitrogen, and phosphorus sources in the medium on the specific growth rate mu of the R, S, and M dissociants of the hydrocarbon-oxidizing strain Pseudomonas aeruginosa K-2, culture pH, and the population composition was studied. Within the first 16 hours of cultivation in all of the four media tested, the R, S, and M dissociants had virtually identical mu. The maximal values of mu were reached by the 20th h of growth in the basal medium (R and S dissociants) and in the carbon-deficient medium containing 0.4% glucose (M dissociant). The R and M dissociants showed the most rapid decrease in mu in the nitrogen-deficient medium containing 0.55% NaNO3. By the end of cultivation in the basal medium, the pH of the R, S, and M cultures decreased to 6.3, 5.3, and 3.3, respectively. In the case of the carbon-deficient medium, the drop in the culture pH was lower. After a 2.5-day incubation of the S dissociant in the phosphorus-deficient medium containing 0.028% NaH2PO4.2H2O and of the M dissociant in the basal medium supplemented with chalk powder, these dissociants were completely displaced from the media.  相似文献   

14.
Plant cell suspension cultures of Catharanthus roseus and Nicotiana tabacum were grown in stirred tank bioreactors operated in batch and continuous mode. The stoichiometry of growth of both species in steady-state glucose limited chemostats was studied at a range of different dilution rates. A linear relation was applied to describe specific glucose uptake, oxygen consumption, and carbon dioxide production as a function of the growth rate. Specific respiration deviated greatly from the linear relation. An unstructured mathematical model, based on the observed stoichiometry in the glucose limited chemostats, was applied to describe the growth in batch culture. From a comparison between the observed growth pattern in batch fermentors and computer simulations it appeared that the stoichiometry of growth of the C. roseus culture was different under steady-state and dynamic conditions. It was concluded that a mathematical model for the growth of suspension culture plant cells in which the biomass is considered to be a single compound with an average chemical composition is of limited value because large changes in the conmposition of the biomass may occur. (c) 1992 John Wiley & Sons, Inc.  相似文献   

15.
Microbial transformation of kepone.   总被引:3,自引:0,他引:3       下载免费PDF全文
Pseudomonas aeruginosa strain KO3 and a mixed aerobic enrichment culture, isolated from sewage sludge lagoon water, were found to aerobically transform the chlorinated insecticide Kepone, yielding monohydro-Kepone. Identification of the product was confirmed by gas chromatography and electron impact mass spectrometry. The mixed culture and P. aeruginosa strain KO3 produced about 4 and 16%, respectively, dihydro-Kepone, determined by cochromatography using authentic standards. Reduced amounts of monohydro-Kepone, compared with the mixed and pure cultures, were produced by James River sediment microorganisms. Kepone was not utilized as a sole carbon or energy source by any of the bacteria or mixed cultures examined in this study.  相似文献   

16.
A two-member methane-utilizing mixed culture of bacteria, formed by combining two pure cultures isolated from a naturally occurring methane-utilizing mixed culture, was studied in continuous culture. From the nutritional requirements and substrate ranges of the pure cultures, a mechanism for the interspecific interactions occurring in the mixed culture was proposed. Product formation kinetics were determined in continuous culture for each product involved in the proposed mechanism. From this proposed mechanism a mathematical model was derived based on simple material balance equations around a single-stage chemostat. The steady-state predictions of this model were compared to experimental results obtained from continuous-culture experiments with the two-member methane-utilizing mixed culture. Interspecific interactions occurring in two-member methanol-utilizing and three-member methane-utilizing mixed cultures have also been discussed.  相似文献   

17.
This study determined the specific uptake rate of glucose and corn oil substrates used as carbon sources in batch cultures of Gibberella fujikuroi. We tested three biological models of growth rate: Monod, logistic and lag-exponential. With respect to the substrate consumption rate, we tested two models: constant cell yield (CCY) and law of mass action (LMA). The experimental data obtained from the culture with glucose as substrate correlated satisfactorily with the logistic/LMA model, indicating that the cell yield was variable. In the case of corn oil as carbon source, considering total residual lipids as substrate in the culture broth, the model with the best correlation was the lag-exp/CCY model. The quantification by GC of the three main fatty acids (linoleic, oleic and palmitic) in the culture medium showed a cumulative behavior, with a maximum concentration of each acid at 36 h. We established a more explicit mechanism of the consumption of corn oil, consisting of two stages: generation of fatty acids by hydrolysis and consumption by cellular uptake. The kinetic of hydrolysable lipids was of first order. We found that the hydrolysis rate of corn oil is not a limiting factor for the uptake of fatty acids by the microorganism. We also established, based on the analysis of the identical mathematical structure of consumption kinetics, that the uptake of fatty acids is faster than the uptake of glucose.  相似文献   

18.
In batch cultures, Bifidobacterium longum SH2 has a higher final cell concentration and greater substrate consumption when grown on lactose versus glucose. Continuous cultures were used to compare lactose and glucose utilization by B. longum quantitatively. In the continuous culture, the estimated maintenance coefficients (m) were similar when on lactose and glucose; the maximum cell yield coefficient (Y(X/S)(max)) was higher on lactose; and the specific consumption rate of lactose (q(S)) was lower than that of glucose. Assuming that cell growth followed the Monod model, the maximum specific growth rates (mu(max)) and saturation constants (K(S)) in lactose and glucose media were determined using the Hanes-Woolf plots. The respective values were 0.40 h(-)(1) and 78 mg/L for lactose and 0.46 h(-)(1) and 697 mg/L for glucose. The kinetic parameters of the continuous cultures showed that B. longum preferred lactose to glucose, although the specific consumption rate of glucose was higher than that of lactose.  相似文献   

19.
Quantitative data on the nutritional requirements of microorganisms are necessary to predict the behavior of bacterial populations and to control their cultivation. The requirements of the R, S, and M dissociants of Pseudomonas aeruginosa for carbon, nitrogen, and phosphorus were derived from the results of 88 cultivation experiments. For each of the dissociants, we derived a coefficient that relates the optical density and the number of cells in the dissociant culture, determined the time when the cultures entered the stationary growth phase, studied cultural changes induced by transfer to the stationary phase, and determined what nutrients limit the growth of particular dissociants. The nutritional requirements of the dissociants are discussed in relation to our earlier data.  相似文献   

20.
The effect of glucose, nitrate, and phosphate on the stationary-phase growth parameters of the R, S, and M dissociants of the hydrocarbon-oxidizing bacterium Pseudomonas aeruginosa K-2 was studied. The data obtained were analyzed in terms of the Mitscherlich equation. S dissociant required less glucose than other dissociants, whereas M dissociant required less nitrogen and phosphorus. These findings were confirmed by the results of investigation of the combined action of glucose, nitrate, and phosphate in a 3 x 3 x 3 factor experiment. It is anticipated that M dissociant must prevail under conditions of nitrogen and phosphorus deficiency, and S dissociant must be dominant in the case of optimally chosen proportions between the biogenic elements studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号