首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorting of regulated secretory proteins in the TGN to immature secretory granules (ISG) is thought to involve at least two steps: their selective aggregation and their interaction with membrane components destined to ISG. Here, we have investigated the sorting of chromogranin B (CgB), a member of the granin family present in the secretory granules of many endocrine cells and neurons. Specifically, we have studied the role of a candidate structural motif implicated in the sorting of CgB, the highly conserved NH2-terminal disulfide– bonded loop. Sorting to ISG of full-length human CgB and a deletion mutant of human CgB (Δcys-hCgB) lacking the 22–amino acid residues comprising the disulfide-bonded loop was compared in the rat neuroendocrine cell line PC12. Upon transfection, i.e., with ongoing synthesis of endogenous granins, the sorting of the deletion mutant was only slightly impaired compared to full-length CgB. To investigate whether this sorting was due to coaggregation of the deletion mutant with endogenous granins, we expressed human CgB using recombinant vaccinia viruses, under conditions in which the synthesis of endogenous granins in the infected PC12 cells was shut off. In these conditions, Δcys-hCgB, in contrast to full-length hCgB, was no longer sorted to ISG, but exited from the TGN in constitutive secretory vesicles. Coexpression of full-length hCgB together with Δcys-hCgB by double infection, using the respective recombinant vaccinia viruses, rescued the sorting of the deletion mutant to ISG. In conclusion, our data show that (a) the disulfide-bonded loop is essential for sorting of CgB to ISG and (b) the lack of this structural motif can be compensated by coexpression of loop-bearing CgB. Furthermore, comparison of the two expression systems, transfection and vaccinia virus–mediated expression, reveals that analyses under conditions in which host cell secretory protein synthesis is blocked greatly facilitate the identification of sequence motifs required for sorting of regulated secretory proteins to secretory granules.  相似文献   

2.
The formation of secretory granules and regulated secretion are generally assumed to occur only in specialized endocrine, neuronal, or exocrine cells. We discovered that regulated secretory proteins such as the hormone precursors pro-vasopressin, pro-oxytocin, and pro-opiomelanocortin, as well as the granins secretogranin II and chromogranin B but not the constitutive secretory protein alpha(1)-protease inhibitor, accumulate in granular structures at the Golgi and in the cell periphery in transfected COS-1 fibroblast cells. The accumulations were observed in 30-70% of the transfected cells expressing the pro-hormones and for virtually all of the cells expressing the granins. Similar structures were also generated in other cell lines believed to be lacking a regulated secretory pathway. The accumulations resembled secretory granules morphologically in immunofluorescence and electron microscopy. They were devoid of markers of the endoplasmic reticulum, endosomes, and lysosomes but in part stained positive for the trans-Golgi network marker TGN46, consistent with their formation at the trans-Golgi network. When different regulated proteins were coexpressed, they were frequently found in the same granules, whereas alpha(1)-protease inhibitor could not be detected in accumulations formed by secretogranin II, demonstrating segregation of regulated from constitutive secretory proteins. In pulse-chase experiments, significant intracellular storage of secretogranin II and chromogranin B was observed and secretion of retained secretogranin II was stimulated with the calcium ionophore A23187. The results suggest that expression of regulated cargo proteins is sufficient to generate structures that resemble secretory granules in the background of constitutively secreting cells, supporting earlier proposals on the mechanism of granule formation.  相似文献   

3.
Abstract: Chromogranins and secretogranins are acidic secretory proteins of unknown function that represent major constituents of neuroendocrine secretory granules. Using a differential screening strategy designed to identify genes involved in peptide hormone biosynthesis and secretion, we have isolated cDNA clones encoding the first nonmammalian homologues of secretogranin II (SgII) and secretogranin III (SgIII) from a Xenopus intermediate pituitary cDNA library. A comparative analysis of the Xenopus and mammalian proteins revealed a striking regional conservation with an overall sequence identity of 48% for SgII and 61% for SgIII. One of the highly conserved and thus potentially functional domains in SgII corresponds to the bioactive peptide secretoneurin. However, in SgII and especially in SgIII, a substantial portion of the potential dibasic cleavage sites is not conserved, arguing against the idea that these granins serve solely as peptide precursors. Moreover, SgIII contains a conserved and repeated motif (DSTK) that is reminiscent of a repeat present in the trans -Golgi network integral membrane proteins TGN38 and TGN41, a finding more consistent with an intracellular function for this protein. When Xenopus intermediate pituitary cells were stimulated in vivo, the mRNA levels of SgII and SgIII increased dramatically (15- and 35-fold, respectively) and in parallel with that of the prohormone proopiomelanocortin (30-fold increase). Our results indicate that the process of peptide hormone production and release in a neuroendocrine cell involves multiple members of the granin family.  相似文献   

4.
5.
In endocrine cells, prohormones and granins are segregated in the TGN (trans-Golgi network) from constitutively secreted proteins, stored in concentrated form in dense-core secretory granules, and released in a regulated manner on specific stimulation. The mechanism of granule formation is only partially understood. Expression of regulated secretory proteins, both peptide hormone precursors and granins, had been found to be sufficient to generate structures that resemble secretory granules in the background of constitutively secreting, non-endocrine cells. To identify which segment of CgA (chromogranin A) is important to induce the formation of such granule-like structures, a series of deletion constructs fused to either GFP (green fluorescent protein) or a short epitope tag was expressed in COS-1 fibroblast cells and analysed by fluorescence and electron microscopy and pulse-chase labelling. Full-length CgA as well as deletion constructs containing the N-terminal 77 residues generated granule-like structures in the cell periphery that co-localized with co-expressed SgII (secretogranin II). These are essentially the same segments of the protein that were previously shown to be required for granule sorting in wild-type PC12 (pheochromocytoma cells) cells and for rescuing a regulated secretory pathway in A35C cells, a variant PC12 line deficient in granule formation. The results support the notion that self-aggregation is at the core of granule formation and sorting into the regulated pathway.  相似文献   

6.
The disulfide-bonded loop of chromogranin B (CgB), a regulated secretory protein with widespread distribution in neuroendocrine cells, is known to be essential for the sorting of CgB from the trans-Golgi network (TGN) to immature secretory granules. Here we show that this loop, when fused to the constitutively secreted protein alpha1-antitrypsin (AT), is sufficient to direct the fusion protein to secretory granules. Importantly, the sorting efficiency of the AT reporter protein bearing two loops (E2/3-AT-E2/3) is much higher compared with that of AT with a single disulfide-bonded loop. In contrast to endogenous CgB, E2/3-AT-E2/3 does not undergo Ca2+/pH-dependent aggregation in the TGN. Furthermore, the disulfide-bonded loop of CgB mediates membrane binding in the TGN and does so with 5-fold higher efficiency if two loops are present on the reporter protein. The latter finding supports the concept that under physiological conditions, aggregates of CgB are the sorted units of cargo which have multiple loops on their surface leading to high membrane binding and sorting efficiency of CgB in the TGN.  相似文献   

7.
Secretogranin III (SgIII) is one of the acidic secretory proteins, designated as granins, which are specifically expressed in neuronal and endocrine cells. To clarify its precise distribution in the anterior lobe of the rat pituitary gland, we raised a polyclonal antiserum against rat SgIII for immunocytochemical analyses. By immunohistochemistry using semithin sections, positive signals for SgIII were detected intensely in mammotropes and thyrotropes, moderately in gonadotropes and corticotropes, but not in somatotropes. The distribution pattern of SgIII in the pituitary gland was similar to that of chromogranin B (CgB), also of the granin protein family, suggesting that the expressions of these two granins are regulated by common mechanisms. The localization of SgIII in endocrine cells was confirmed by immunoelectron microscopy. In particular, secretory granules of mammotropes and thyrotropes were densely and preferentially co-labeled for SgIII and CgB in their periphery. Moreover, positive signals for SgIII were occasionally found in cells containing both prolactin and TSH in secretory granules. These lines of evidence suggest that SgIII and CgB are closely associated with the secretory granule membrane and that this membrane association might contribute to gathering and anchoring of other soluble constituents to the secretory granule membrane.  相似文献   

8.
The constitutive and regulated secretory pathways represent the classical routes for secretion of proteins from neuroendocrine cells. Selective aggregation of secretory granule constituents in an acidic, bivalent cation-rich environment is considered to be a prerequisite for sorting to the regulated secretory pathway. The effect of selective vacuolar H+-ATPase (V-ATPase) inhibitor bafilomycin A1 on the pH gradient along the secretory pathway was used here to study the role of acidification on the trafficking of the regulated secretory protein chromogranin A (CgA) in PC12 cells. Sorting of CgA was assessed by three-dimensional deconvolution microscopy, subcellular fractionation, and secretagogue-stimulated release, examining a series of full-length or truncated domains of human CgA (CgA-(1-115), CgA-(233-439)) fused to either green fluorescent protein or to a novel form of secreted embryonic alkaline phosphatase (EAP). We show that a full-length CgA/EAP chimera is sorted to chromaffin granules for exocytosis. Inhibition of V-ATPase by bafilomycin A1 markedly reduced the secretagogue-stimulated release of CgA-EAP by perturbing sorting of the chimera (at the trans-Golgi network or immature secretory granule) rather than the late steps of exocytosis. The effect of bafilomycin A1 on CgA secretion depends on a sorting determinant located within the amino terminus (CgA-(1-115)) but not the C-terminal region of the granin. Moreover, examination of chromaffin granule abundance in PC12 cells exposed to bafilomycin A1 reveals a substantial decrease in the number of dense-core vesicles. We propose that a V-ATPase-mediated pH gradient in the secretory pathway is an important factor for the formation of dense-core granules by regulating the ability of CgA to form aggregates, a crucial step that may underlie the granulogenic function of the protein.  相似文献   

9.
A key feature of the regulated secretory pathway in neuroendocrine cells is lumenal pH, which decreases between trans-Golgi network and mature secretory granules. Because peptidylglycine alpha-amidating monooxygenase (PAM) is one of the few membrane-spanning proteins concentrated in secretory granules and is a known effector of regulated secretion, we examined its sensitivity to pH. Based on antibody binding experiments, the noncatalytic linker regions between the two enzymatic domains of PAM show pH-dependent conformational changes; these changes occur in the presence or absence of a transmembrane domain. Integral membrane PAM-1 solubilized from rat anterior pituitary or from transfected AtT-20 cells aggregates reversibly at pH 5.5 while retaining enzyme activity. Over 35% of the PAM-1 in anterior pituitary extracts aggregates at pH 5.5, whereas only about 5% aggregates at pH 7.5. PAM-1 recovered from secretory granules and endosomes is highly responsive to low pH-induced aggregation, whereas PAM-1 recovered from a light, intracellular recycling compartment is not. Mutagenesis studies indicate that a transmembrane domain is necessary but not sufficient for low pH-induced aggregation and reveal a short lumenal, juxtamembrane segment that also contributes to pH-dependent aggregation. Taken together, these results demonstrate that several properties of membrane PAM serve as indicators of granule pH in neuroendocrine cells.  相似文献   

10.
Chromogranin B and secretogranin II, two members of the granin family, are known to be post-translationally modified by the addition of O-linked carbohydrates to serine and/or threonine, phosphate to serine and threonine, and sulfate to carbohydrate and tyrosine residues. In the present study, chromogranin B and secretogranin II were used as model proteins to investigate in which subcompartment of the Golgi complex secretory proteins become phosphorylated. Monensin, a drug known to block the transport from the medial to the trans cisternae of the Golgi stack, inhibited the phosphorylation of the granins, indicating that this modification occurred distal to the medial Golgi. Monensin also blocked the addition of galactose to O-linked carbohydrates and the sulfation of the granins, confirming previous data that these modifications take place in the trans Golgi. To distinguish, within the trans Golgi, between the trans cisternae of the Golgi stack and the trans Golgi network, we made use of the previous observation that brefeldin A results in the redistribution to the endoplasmic reticulum of membrane-bound enzymes of the trans cisternae of the Golgi stack, but not of the trans Golgi network. Brefeldin A treatment abolished granin sulfation but resulted in the accumulation of phosphorylated and galactosylated granins. Differential effects of brefeldin A on membranes of the Golgi stack versus the trans Golgi network were also observed by immunofluorescence analysis of marker proteins specific for either compartment. Our results suggest that the phosphorylation of secretory proteins, like their galactosylation, largely occurs in the trans cisternae of the Golgi stack, whereas the sulfation of secretory proteins on both carbohydrate and tyrosine residues takes place selectively in the trans Golgi network.  相似文献   

11.
Secretogranin II (previously also called chromogranin C) is a tyrosine-sulfated secretory protein found in secretory granules in a wide variety of endocrine cells and neurons. Here, we have determined the primary structure of human secretogranin II from a full length cDNA clone and have investigated its properties, predicted from the sequence, by studying the behavior of purified secretogranin II under conditions characteristic of the milieu of secretory granules. Analysis of a 2.35-kilobase cDNA clone isolated from a human pituitary library and identified as secretogranin II by various criteria showed that human presecretogranin II is a 617-residue polypeptide containing an NH2-terminal located signal peptide. Secretogranin II lacks the disulfide-bonded loop structure near the NH2 terminus which is conserved in chromogranin A and chromogranin B (secretogranin I), two other widespread constituents of neuroendocrine secretory granules, but like the latter two proteins contains (i) an -E-N/S-L-X-A/D-X-D/E-X-E-L- motif and (ii) multiple potential dibasic cleavage sites for the generation of smaller, perhaps biologically active peptides. Another structural feature that secretogranin II shares with chromogranin A and chromogranin B (secretogranin I) is the abundance of acidic residues all along the polypeptide chain whose negative charge must somehow be neutralized to allow condensation and packaging of the protein into secretory granules. Experiments with purified secretogranin II showed that in the presence of 10 mM calcium at pH 5.2, conditions characteristic of the milieu of neuroendocrine secretory granules, this protein formed aggregates. Immunoglobulin G, a secretory protein that in vivo is not packaged into secretory granules, did not form aggregates under these in vitro conditions and was excluded from the secretogranin II aggregates. Very little aggregation of secretogranin II was observed in the absence of calcium at pH 5.2 or in the presence of calcium at neutral pH. In vivo, ammonium chloride, which is known to neutralize the pH of acidic intracellular compartments, inhibited the packaging of newly synthesized secretogranin II into secretory granules. Our results suggest that the low pH- and calcium-induced aggregation of secretogranin II may be important for the organization of the secretory granule matrix and raise the possibility that aggregation of secretogranin II may be involved in its sorting to secretory granules.  相似文献   

12.
Brefeldin A (BFA) is a useful tool for studying protein trafficking and identifying organelles in the plant secretory and endocytic pathways. At low concentrations (5–10 μg ml?1), BFA caused both the Golgi apparatus and trans‐Golgi network (TGN), an early endosome (EE) equivalent in plant cells, to form visible aggregates in transgenic tobacco BY‐2 cells. Here we show that these BFA‐induced aggregates from the Golgi apparatus and TGN are morphologically and functionally distinct in plant cells. Confocal immunofluorescent and immunogold electron microscope (EM) studies demonstrated that BFA‐induced Golgi‐ and TGN‐derived aggregates are physically distinct from each other. In addition, the internalized endosomal marker FM4‐64 co‐localized with the TGN‐derived aggregates but not with the Golgi aggregates. In the presence of the endocytosis inhibitor tyrphostin A23, which acts in a dose‐ and time‐dependent manner, SCAMP1 (secretory carrier membrane protein 1) and FM4‐64 are mostly excluded from the SYP61‐positive BFA‐induced TGN aggregates, indicating that homotypic fusion of the TGN rather than de novo endocytic trafficking is important for the formation of TGN/EE‐derived BFA‐induced aggregates. As the TGN also serves as an EE, continuously receiving materials from the plasma membrane, our data support the notion that the secretory Golgi organelle is distinct from the endocytic TGN/EE in terms of its response to BFA treatment in plant cells. Thus, the Golgi and TGN are probably functionally distinct organelles in plants.  相似文献   

13.
Secretogranin II (SgII) belongs to the granin family of prohormones widely distributed in dense-core secretory granules (DCGs) of endocrine, neuroendocrine, and neuronal cells, including sympathoadrenal chromaffin cells. The mechanisms by which secretory proteins, and granins in particular, are sorted into the regulated secretory pathway are unsettled. We designed a strategy based on novel chimeric forms of human SgII fused to fluorescent (green fluorescent protein) or chemiluminescent (embryonic alkaline phosphatase) reporters to identify trafficking determinants mediating DCG targeting of SgII in sympathoadrenal cells. Three-dimensional deconvolution fluorescence microscopy and secretagogue-stimulated release studies demonstrate that SgII chimeras are correctly targeted to DCGs and released by exocytosis in PC12 and primary chromaffin cells. Results from a Golgi-retained mutant form of SgII suggest that sorting of SgII into DCGs depends on a saturable sorting machinery at the trans-Golgi/trans-Golgi network. Truncation analyses reveal the presence of DCG-targeting signals within both the N- and C-terminal regions of SgII, with the putative alpha-helix-containing SgII-(25-41) and SgII-(334-348) acting as sufficient, independent sorting domains. This study defines sequence features of SgII mediating vesicular targeting in sympathoadrenal cells and suggests a mechanism by which discrete domains of the molecule function in sorting, perhaps by virtue of a particular arrangement in tertiary structure and/or interaction with a specific component of the DCG membrane.  相似文献   

14.
Low-pH- and calcium-induced aggregation of regulated secretory proteins has been proposed to play a role in their retention and storage in secretory granules. However, this has not been tested for secretory proteins that are stored in the exocrine parotid secretory granules. Parotid granule matrix proteins were analyzed for aggregation in the presence or absence of calcium and in the pH range of 5.5 to 7.5. Amylase did not aggregate under these conditions, although <10% of parotid secretory protein (PSP) aggregated below pH 6.0. To test aggregation directly in isolated granules, rat parotid secretory granules were permeabilized with 0.1% saponin in the presence or absence of calcium and in the pH range of 5.0 to 8.4. In contrast to the low-pH-dependent retention of amylase in exocrine pancreatic granules, amylase was quantitatively released and most PSP was released from parotid granules under all conditions. Both proteins were completely released upon granule membrane solubilization. Thus neither amylase nor PSP show low-pH- or calcium-induced aggregation under physiological conditions in the exocrine parotid secretory granules.  相似文献   

15.
Regulated secretory proteins are stored within specialized vesicles known as secretory granules. It is not known how proteins are sorted into these organelles. Regulated proteins may possess targeting signals which interact with specific sorting receptors in the lumen of the trans-Golgi network (TGN) prior to their aggregation to form the characteristic dense-core of the granule. Alternatively, sorting may occur as the result of specific aggregation of regulated proteins in the TGN. Aggregates may be directed to secretory granules by interaction of a targeting signal on the surface with a sorting receptor. Novel targeting signals which confer on regulated proteins a tendency to aggregate under certain conditions, and in so doing cause them to be incorporated into secretory granules, have been implicated. Specific targeting signals may also play a role in directing membrane proteins to secretory granules.  相似文献   

16.
The mammalian endopeptidase furin is a type 1 integral membrane protein that is predominantly localized to the TGN and is degraded in lysosomes with a t1/2 = 2–4 h. Whereas the localization of furin to the TGN is largely mediated by sorting signals in the cytosolic tail of the protein, we show here that targeting of furin to lysosomes is a function of the luminal domain of the protein. Inhibition of lysosomal degradation results in the accumulation of high molecular weight aggregates of furin; aggregation is also dependent on the luminal domain of furin. Temperature and pharmacologic manipulations suggest that furin aggregation occurs in the TGN and thus precedes delivery to lysosomes. These findings are consistent with a model in which furin becomes progressively aggregated in the TGN, an event that leads to its transport to lysosomes. Our observations indicate that changes in the aggregation state of luminal domains can be potent determinants of biosynthetic targeting to lysosomes and suggest the possible existence of quality control mechanisms for disposal of aggregated proteins in compartments of the secretory pathway other than the endoplasmic reticulum.  相似文献   

17.
The mechanism of cargo sorting at the trans-Golgi network (TGN) for secretion is poorly understood. We previously reported the involvement of the actin-severing protein cofilin and the Ca(2+) ATPase secretory pathway calcium ATPase 1 (SPCA1) in the sorting of soluble secretory cargo at the TGN in mammalian cells. Now we report that cofilin in yeast is required for export of selective secretory cargo at the late Golgi membranes. In cofilin mutant (cof1-8) cells, the cell wall protein Bgl2 was secreted at a reduced rate and retained in a late Golgi compartment, whereas the plasma membrane H(+) ATPase Pma1, which is transported in the same class of carriers, reached the cell surface. In addition, sorting of carboxypeptidase Y (CPY) to the vacuole was delayed, and CPY was secreted from cof1-8 cells. Loss of the yeast orthologue of SPCA1 (Pmr1) exhibited similar sorting defects and displayed synthetic sickness with cof1-8. In addition, overexpression of PMR1 restored Bgl2 secretion in cof1-8 cells. These findings highlight the conserved role of cofilin and SPCA1/Pmr1 in sorting of the soluble secretory proteins at the TGN/late Golgi membranes in eukaryotes.  相似文献   

18.
The granin (chromogranin/secretogranin) family   总被引:27,自引:0,他引:27  
The chromogranins/secretogranins, referred to in abbreviated form as granins, are a family of acidic secretory proteins that are found in the secretory granules of a wide variety of endocrine cells and neurons, being stored together with many different peptide hormones and neuropeptides. The recent elucidation of their primary structure has provided insights into possible functions of these proteins. Moreover, the granins have been successfully used as markers for normal and neoplastic endocrine and neuronal cells, as well as model proteins to understand the sorting mechanism involved in the formation of secretory granules.  相似文献   

19.
Rat prolactin in the dense cores of secretory granules of the pituitary gland is a Lubrol-insoluble aggregate. In GH(4)C(1) cells, newly synthesized rat prolactin and growth hormone were soluble, but after 30 min about 40% converted to a Lubrol-insoluble form. Transport from the endoplasmic reticulum is necessary for conversion to Lubrol insolubility, since incubating cells with brefeldin A or at 15 degrees C reduced formation of insoluble rat (35)S-prolactin. Formation of Lubrol-insoluble aggregates has protein and cell specificity; newly synthesized human growth hormone expressed in AtT20 cells underwent a 40% conversion to Lubrol insolubility with time, but albumin did not, and human growth hormone expressed in COS cells underwent less than 10% conversion to Lubrol insolubility. del32-46 growth hormone, a naturally occurring form of growth hormone, and P89L growth hormone underwent conversion, although they were secreted more slowly, indicating that there is some tolerance in structural requirements for aggregation. An intracellular compartment with an acidic pH is not necessary for conversion to Lubrol insolubility, because incubation with chloroquine or bafilomycin slowed, but did not prevent, the conversion. GH(4)C(1) cells treated with estradiol, insulin, and epidermal growth factor accumulate more secretory granules and store more prolactin, but not more growth hormone, than untreated cells; Lubrol-insoluble aggregates of prolactin and growth hormone formed to the same extent in hormone-treated or untreated GH(4)C(1) cells, but prolactin was retained longer in hormone-treated cells. These findings indicate that aggregation alone is not sufficient to cause retention of secretory granule proteins, and there is an additional selective process.  相似文献   

20.
Prior to secretion, regulated peptide hormones are selectively sorted to secretory granules (SGs) at the trans‐Golgi network (TGN) in endocrine cells. Secretogranin III (SgIII) appears to facilitate SG sorting process by tethering of protein aggregates containing chromogranin A (CgA) and peptide hormones to the cholesterol‐rich SG membrane (SGM). Here, we evaluated the role of SgIII in SG sorting in AtT‐20 cells transfected with small interfering RNA targeting SgIII. In the SgIII‐knockdown cells, the intracellular retention of CgA was greatly impaired, and only a trace amount of CgA was localized within the vacuoles formed in the TGN, confirming the significance of SgIII in both the tethering of CgA‐containing aggregates and the establishment of the proper SG morphology. Although the intracellular retention of proopiomelanocortin (POMC) was considerably impaired in SgIII‐knockdown cells, residual adrenocorticotropic hormone (ACTH)/POMC was still localized to some few remaining SGs together with another granin protein, secretogranin II (SgII), and was secreted in a regulated manner. Biochemical analyses indicated that SgII bound directly to the SGM in a cholesterol‐dependent manner and was able to retain the aggregated form of POMC, revealing a latent redundancy in the SG sorting and retention mechanisms, that ensures the regulated secretion of bioactive peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号