首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific acidic polysaccharide has been isolated from the Shigella boydii type 9 antigenic lipopolysaccharide after mild hydrolysis followed by chromatography on Sephadex G-50. The polysaccharide consists of D-glucose, D-glucuronic acid, 2-acetamido-2-deoxy-D-glucose, and L-rhamnose. From the results of methylation analysis, partial acid hydrolysis and 13C NMR data the structure of the repeating unit of the polysaccharide was deduced as follows: [----4)DGlcp(alpha 1----4)DGlcAp(beta 1----3)DGlcNAcp(alpha 1----3)LRhap(alpha 1----]n. The lipopolysaccharide from Sh. boydii 9 was fractionated by gel chromatography on the Sephadex G-200 column in a buffer containing sodium deoxycholate into three fractions. PAGE-SDS of the fractions obtained, 13C NMR- and chromato-mass-spectrometry data indicated that the three fractions contained the O-specific polysaccharide as the only carbohydrate component. The substance from the most high-molecular weight fraction contained unusually long O-specific chains (60,000 dalton). In the fat acid composition this fraction differed from other lipopolysaccharides by absence of beta-hydroxymyristic acid.  相似文献   

2.
alpha-D-Man-(1----2)-alpha-D-Man-(1----3)-D-Gal, a structural fragment of the main chain of Salmonella serogroups C2 and C3 O-specific polysaccharides, and the isomer with the central residue beta have been synthesised, as have some oligosaccharides related to the structure of the O-specific polysaccharide of S. kentucky (serogroup C3), namely, alpha-D-Glc-(1----4)-D-Gal, alpha-D-Man-(1----3)-[alpha-D-Glc-(1----4)]-D-Gal, and alpha-D-Man-(1----2)-alpha-D-Man-(1----3)-[alpha-D-Glc-(1----4)]-D-Gal, and the isomers with the D-Glc unit beta. Each oligosaccharide was converted into the alpha-glycosyl phosphate.  相似文献   

3.
The O-specific polysaccharide chain of the Pseudomonas aurantiaca IMV 31 lipopolysaccharide contains N-acetyl-L-fucosamine (FucNAc) and di-N-acetyl-D-bacillosamine (2,4-diacetamido-2,4,6-trideoxyglucose, Bac(NAc)2) in the ratio 2:1. On the basis of methylation, solvolysis with anhydrous hydrogen fluoride, and computer-assisted analysis of 13C-NMR spectrum, it was concluded that the trisaccharide repeating unit of the polysaccharide possesses the following structure: structure: ----3)-beta-D-Bac(NAc)2-(1----3)-alpha-L-FucNAc-(1----3)-alpha-L- FucNAc-(1----.  相似文献   

4.
Lipopolysaccharides of Yersinia enterocolitica serovars O:5 and O:5,27 were shown to have a similar sugar composition, consisting of L-rhamnose, D-glucose, D-galactose, D- and L-glycero-D-manno-heptose, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose, 3-deoxy-D-manno-octulosonate and D-threo-pent-2-ulose (D-xylulose). Partial hydrolysis of lipopolysaccharides with acetic acid produced rhamnans with the following repeating unit: ----3)-L-Rha rho(alpha 1----3)-L-Rha rho(alpha 1----3)-L-Rha rho(beta 1----. 13C-NMR and methylation studies of the lipopolysaccharides gave the following structure for the repeating unit of the two O-specific polysaccharides: ----3)-L-Rha rho(alpha 1----3)-L-Rha rho(alpha 1----3)-L-Rha rho(beta 1----. (formula; see text)  相似文献   

5.
Structure of the O-antigen of Francisella tularensis strain 15.   总被引:2,自引:0,他引:2  
The O-specific polysaccharide, obtained by mild acid degradation of the lipopolysaccharide of Francisella tularensis strain 15, contained 2-acetamido-2,6-dideoxy-D-glucose (D-QuiNAc), 4,6-dideoxy-4-formamido-D-glucose (D-Qui4NFm), and 2-acetamido-2-deoxy-D-galacturonamide (D-GalNAcAN) in the ratios 1:1:2. Tri- and tetra-saccharide fragments were obtained on treatment of the polysaccharide with anhydrous hydrogen fluoride and partial hydrolysis with 0.1 M hydrochloric acid, respectively. On the basis of 1H- and 13C-n.m.r. spectroscopy of the polysaccharide and the saccharides, it was concluded that the O-antigen had the structure: ----4)-alpha-D-GalpNAcAN-(1----4)-alpha-D-GalpNAcAN-(1----3) -beta-D-QuipNAc-(1----2)-beta-D-Quip4NFm-(1----. This O-antigen is related in structure to those of Pseudomonas aeruginosa O6, immunotype 1, and IID 1008, and Shigella dysenteriae type 7.  相似文献   

6.
The O-specific polysaccharide of P. fluorescens IMV 2366 was studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including 2D gsCOSY, TOCSY, gsNOESY, H-detected 1H,(13)C gsHSQC, HMQC-TOCSY, and gsHMBC experiments. The polysaccharide contains L-rhamnose, 2-acetamido-2,6-dideoxy-D-galactose (D-FucNAc) and 3-acylamido-3,6-dideoxy-D-glucose (D-Qui3NAcyl, where Acyl is 3-hydroxy-2,3-dimethyl-5-oxoprolyl). The structure 1 of the polysaccharide was found to be similar to the structure 2 of a 6-deoxy-L-talose (L-6dTal)-containing O-specific polysaccharide of a non-classified P. fluorescens strain, 361, studied earlier [Khomenko, V. A.; Naberezhnykh, G. A.; Isakov, V. V.; Solov'eva, T. F.; Ovodov, Y. S.; Knirel, Y. A.; Vinogradov, E. V. Bioorg. Khim. 1986, 12, 1641-1648; Naberezhnykh, G. A.; Khomenko, V. A.; Isakov, V. V., El'kin, Y. N.; Solov'eva, T. F.; Ovodov, Y. S. Bioorg. Khim. 1987, 13, 1428-1429]. --> 2)-beta-D-Quip3NAcyl-(1 --> 3)-alpha-L-Rhap-(1 --> 3)-alpha-D-FucpNAc-(1 --> 1. --> 4)-beta-D-Quip3NAcyl-(1 --> 3)-alpha-L-6dTalp4Ac-(1 --> 3)-alpha-D-FucpNAc-(1 -->2.  相似文献   

7.
On the basis of non-destructive analysis by means of 1H and 13C NMR spectroscopy and calculation of specific optical rotation, it was concluded that O-specific polysaccharide of Pseudomonas cepacia strain IMV 4207 (serotype A) has the structure (I): (formula; see text) Two structurally different polysaccharides were found in the ratio of approximately 2.5:1 in P. cepacia strain IMV 598/2 which is serologically related to serotype A in Nakamura classification and serotype 2 in Heidt classification. The minor polysaccharide has the structure (I) whereas the major one possesses the structure (II) which is characteristic of the formerly studied O-specific polysaccharide of P. cepacia strain IMV 4137 belonging to serotype 2: ----4)-beta-D-Galp-(1----2)-alpha-L-Rhap-(1----.  相似文献   

8.
O-Specific polysaccharide, consisting of D-rhamnose and L-glycero-D-manno-heptose (LD-Hep) in a 2 : 1 ratio, was obtained on the mild acid degradation of the Pseudomonas cepacia IMV 673/2 lipopolysaccharide; monosaccharide LD-Hep has not previously been found in O-specific chains of lipopolysaccharides. On the basis of methylation and 13C-NMR data, it was concluded that the polysaccharide is composed of trisaccharide repeating units having the following structure: ----3)-alpha-D-Rha-(1----3)-alpha-D-Rha-(1----2)-alpha-LD-Hep-(1----  相似文献   

9.
An acidic O-specific polysaccharide containing D-glucuronic acid (D-GlcA), 2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (D-GlcNAc3NAcA), 2,3-diacetamido-2,3-dideoxy-D-mannuronoyl-L-alanine (D-ManNAc3NAcA6Ala), and 2-acetamido-2,4, 6-trideoxy-4-[(S)-3-hydroxybutyramido]-D-glucose (D-QuiNAc4NAcyl) was obtained by mild acid degradation of the lipopolysaccharide of the bacterium Pseudoalteromonas sp. KMM 634 followed by gel-permeation chromatography. The polysaccharide was cleaved selectively with a new solvolytic agent, trifluoromethanesulfonic acid, to give a disaccharide and a trisaccharide with D-GlcNAc3NAcA at the reducing end. The borohydride-reduced oligosaccharides and the initial polysaccharide were studied by GLC-MS and 1H- and 13C-NMR spectroscopy, and the following structure of the linear tetrasaccharide repeating unit of the polysaccharide was established: -->3)-alpha-D-QuipNAc4Ac4NAcyl-(1-->4)-beta-D-ManpNAc3NAcA6Ala+ ++-(1-->4)-b eta-D-GlcpNAc3NAc3NAcA-(1-->4)-beta-D-GlcpA-(1-->.  相似文献   

10.
On mild acid degradation of a lipopolysaccharide from Pseudomonas cepacia strain IMV 4137, a serologically active O-specific polysaccharide was obtained and shown to contain L-rhamnose and D-galactose. According to 1H- and 13C-NMR data as well as methylation analysis, the polysaccharide is made up of disaccharide repeating units of the following structure:----2)-alpha-L-Rhap-(1----4)-alpha-D-Galp-(1----.  相似文献   

11.
The rfb gene, involved in the synthesis of the O-specific polysaccharide (a mannose homopolymer) of Escherichia coli O9 lipopolysaccharide (LPS), was cloned in E. coli K-12 strains. The O9-specific polysaccharide covalently linked to the R core of K-12 was extracted from the K-12 strains harboring the O9 rfb gene. All the other genes required for the synthesis of rfe-dependent LPS are therefore considered to be present in the K-12 strains. It was found that bacteria harboring some clones with deletions of the ca. 20-kilobase-pair (kbp) BglII-StuI fragment no longer synthesized the O9-specific polysaccharide. However, bacteria harboring clones del 21, del 22, and del 25, which carry deletions of the 10-kbp PstI-StuI fragment, synthesized an O-specific polysaccharide antigenically distinct from E. coli O9 LPS. Although this new O-specific polysaccharide consisted solely of mannose and the mannose residues were combined only through alpha-1,2 linkage, it was still composed of a repeating oligosaccharide unit, possibly a trisaccharide unit,----2)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----. It is therefore likely that this new O-specific polysaccharide was derived from a part of the O9-specific polysaccharide----3)alpha Man-(1----3)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----and that the deleted part of the clones was responsible for the synthesis of alpha-1,3 linkages of the O9-specific polysaccharide.  相似文献   

12.
Lipopolysaccharides were isolated from the phenol layer on aqueous phenol extraction of cells of Pseudomonas aeruginosa O11 (Lányi classification), strains 170021 and 170040. On mild acid degradation of the lipopolysaccharides, with the subsequent gel-filtration on Sephadex G-50, neutral O-specific polysaccharides made up of 6-deoxysugars alone were obtained. Two 2-acetamido-2,6-dideoxy-L-galactose (LFucNAc), 2-acetamido-2,6-dideoxy-D-glucose (DQuiNAc) and L-rhamnose (LRha) residues were found to be the components of the strain 170021 polysaccharide repeating units; those of strain 170040 contained the same monosaccharides, but, instead of 2-acetamido-2,6-dideoxy-D-glucose residue, that of 2-acetamido-2,6-dideoxy-D-galactose (DFucNAc) was present. On the basis of the 13C nuclear magnetic resonance data, methylation analysis and three successive Smith degradations the following structures were determined for the polysaccharide repeating units: strain 170021----2) LRha(alpha 1----3)LFucNAc(alpha 1----3)LFucNAc(alpha 1----3)DQuiNAc(beta 1----; strain 170040,----2)LRha(alpha 1----3)LFucNAc-(alpha 1----3)LFucNAc(alpha 1----3)DFucNAc(beta 1----; differing from one another by configuration of C-4 of 2-acetamido-2,6-dideoxy-D-hexopyranose only.  相似文献   

13.
Derivatives of azidosugars were shown to be stable under conditions of trityl-cyanoethylidene condensation. Tritylated 1,2-O-(1-cyano)ethylidene derivative of 2-azido-2-deoxy-beta-D-mannopyranosyl-(1----4)-L-rhamnopyranose was used as a starting material for the synthesis of [----3)-beta-D-ManNAc-(1----4)-alpha-L-Rha-(1----]n, the O-specific polysaccharide of Pseudomonas aeruginosa X (Meitert).  相似文献   

14.
The lipopolysaccharide of Plesiomonas shigelloides serotype O74:H5 (strain CNCTC 144/92) was obtained with the hot phenol/water method, but unlike most of the S-type enterobacterial lipopolysaccharides, the O-antigens were preferentially extracted into the phenol phase. The poly- and oligosaccharides released by mild acidic hydrolysis of the lipopolysaccharide from both phenol and water phases were separated and investigated by (1)H and (13)C NMR spectroscopy, MALDI-TOF mass spectrometry, and sugar and methylation analysis. The O-specific polysaccharide and oligosaccharides consisting of the core, the core with one repeating unit, and the core with two repeating units were isolated. It was concluded that the O-specific polysaccharide is composed of a trisaccharide repeating unit with the [-->2)-beta-d-Quip3NAcyl-(1-->3)-alpha-l-Rhap2OAc-(1-->3)-alpha-d-FucpNAc-(1-->] structure, in which d-Qui3NAcyl is 3-amino-3,6-dideoxy-d-glucose acylated with 3-hydroxy-2,3-dimethyl-5-oxopyrrolidine-2-carboxylic acid. The major oligosaccharide consisted of a single repeating unit and a core oligosaccharide. This undecasaccharide contains information about the biological repeating unit and the type and position of the linkage between the O-specific chain and core. The presence of a terminal beta-d-Quip3NAcyl-(1--> residue and the -->3)-beta-d-FucpNAc-(1-->4)-alpha-d-GalpA element showed the structure of the biological repeating unit of the O-antigen and the substitution position to the core. The -->3)-beta-d-FucpNAc-(1--> residue has the anomeric configuration inverted compared to the same residue in the repeating unit. The core oligosaccharide was composed of a nonphosphorylated octasaccharide, which represents a novel core type of P. shigelloides LPS characteristic of serotype O74. The similarity between the isolated O-specific polysaccharide and that found on intact bacterial cells and lipopolysaccharide was confirmed by HR-MAS NMR experiments.  相似文献   

15.
The O-specific polysaccharide of Salmonella arizonae O59 (Arizona 19) is composed of D-galactose, N-acetyl-D-glucosamine, and N-acetyl-L-fucosamine (FucNAc, 2-acetamido-2,6-dideoxy-L-galactose) in the ratio 1:1:1. The computerized calculation of the 13C NMR spectrum of the polysaccharide, based on the monosaccharide composition, spectra of the free monosaccharides and glycosydation effects, together with the chemical analysis (methylation and Smith degradation) showed that the polysaccharide is built up of trisaccharide repeating units of the following structure: ----3)-alpha-L-FucNAcp(1----3)-beta-D-GlcNAcp-(1----2)-beta- D-Galp-1(----. The molecular basis of serological interrelations between S. arizonae O59 and Pseudomonas aeruginosa O7 (Lányi) is discussed.  相似文献   

16.
Serologically active O-specific polysaccharides were obtained on mild acid hydrolysis of lipopolysaccharides from Pseudomonas cerasi 467 and Pseudomonas syringae pv. syringae strains 218 and P-55. On the basis of 1H- and 13C-NMR analysis, it was concluded that the P. cerasi polysaccharide has the following structure: ----3)-alpha-D-Rhap-(1----3)-alpha-D-Rhap-(1----2)-alpha-D-+ ++Rhap-(1---- which is identical to that of O-specific polysaccharide from P. syringae pv. morsprunorum C28 (Smith A. R. W. et al. Eur. J. Biochem., 1985, V. 149, No 1, p. 73-78). The polysaccharides from P. syringae pv. syringae strains possess the same backbone but differ by the presence of D-fucose as monosaccharide branches. Methylation and 1H- and 13C-NMR analysis revealed the following structure of these polysaccharides: (Formula: see text). The degree of substitution of the backbone trisaccharide units by the fucofuranose residues is about 35% for the strain 218 and about 85% for the strain P-55.  相似文献   

17.
The structure of the O-specific side-chains of the Escherichia coli O2 lipopolysaccharide has been investigated, different 1H- and 13C-n.m.r. techniques being the main methods used. It is concluded that they are composed of pentasaccharide repeating-units having the following structure, in which D-Fuc3NAc is 3-acetamido-3,6-dideoxy-D-galactose. ----4)-beta-D-GlcpNAc-(1----3)-alpha-L-Rhap-(1----2)-alpha-L-Rh ap-(1----3)-beta-L-Rhap-(1----2 increases 1 alpha-D-Fucp3NAc.  相似文献   

18.
The O-specific polysaccharide of the 0114 antigen (lipopolysaccharide) of Escherichia coli 0114 and oligosaccharides obtained from it by Smith degradation and hydrogen fluoride solvolysis were analyzed, using proton and 13C nuclear magnetic resonance spectroscopy and methylation. The results indicated that the 0114 polysaccharide has the tetrasaccharide repeating unit alpha-N-acetylglucosamine(1 leads to 4) beta-3,6-dideoxy-3-(N-acetyl-L-seryl)aminoglucose(1 leads to 3) beta-ribofuranose(1 leads to 4)galactose. In the polysaccharide the repeating units are joined through beta 1 leads to 3-galactosyl linkages. This structure is compared with that of the serologically cross-reacting Shigella boydii 08 antigen and the serological similarity is discussed.  相似文献   

19.
The structure of the O-specific polysaccharide of the phenol-soluble cellular lipopolysaccharide of Vibrio anguillarum has been investigated. The studies involved the use of methylation analysis, partial hydrolysis with 48% hydrogen fluoride, Smith degradation, oxidation with chromium trioxide, and comprehensive proton and carbon-13 nuclear magnetic resonance studies, in which one- and two-dimensional experiments were carried out. As a result of these studies it is proposed that the O-specific polysaccharide of Vibrio anguillarum is composed of a regular heteropolymer, i.e., a main chain of (1----4)-linked 3-acetamido-3,6-dideoxy-beta-L-glucose residues alternately substituted through O-2 with side chain residues of 2-acetamido-2,6-dideoxy-alpha-D-glucose, which seem to be substituted through either O-3 or O-4 with propionyl groups (R), as in the following structure. (Formula: see text)  相似文献   

20.
The lipopolysaccharide (LPS) preparation isolated from the bacterial mass of Pseudomonas fluorescens IMV 2366 (biovar III) by Westphal's method and purified by repeated ultracentrifugation was characterized by the presence of the S- and R-forms of molecules. The following structural portions of the LPS molecule were obtained in the individual state and characterized: lipid A, core oligosaccharide, and O-specific polysaccharide. The main components of the lipid A hydrophobic moiety were 3-hydoxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, and hexadecanoic fatty acids. Glucosamine, phosphoethanolamine, and phosphorus were identified as the components of the lipid A hydrophilic moiety. Rhamnose, glucose, galactose, glucosamine, galactosamine, alanine, phosphoethanolamine, phosphorus, 2-keto-3-desoxyoctulosonic acid (KDO), as well as 2-amino-2,6-didesoxygalactose (FucN) and 3-amino-3,6-didesoxyglucose (Qui3N), were revealed in the composition of the core oligosaccharide fractions. O-specific polysaccharide chains were established to be composed of repeating trisaccharide units consisting of residues of L-rhamnose (L-Rha), 2-acetamido-2,6-didesoxy-D-galactose (D-FucNAc), and 3-acylamido-3,6-didesoxy-D-glucose (D-Qui3NAcyl), where Acyl = 3-hydroxy-2,3-dimethyl-5-hydroxyprolyl. Neither double immunodiffusion in agar not the immunoenzyme assay revealed serological relations between the strain studied and the P. fluorescens strains studied earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号