首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the peroxidase-oxidase reaction with NADH and O2 as substrates and melatonin as a cofactor in a semibatch reactor. We show for the first time that melatonin is an activator of the reaction catalyzed by enzymes from both plant and animal sources. Furthermore, melatonin promotes oscillatory dynamics in the pH range from 5 to 6. The frequency of the oscillations depends on the pH such that an increase in pH was accompanied by a decrease in frequency. Conversely, an increase in the flow rate of NADH or an increase in the average concentration of NADH resulted in an increase in oscillation frequency. Complex dynamics were not observed with melatonin as a cofactor. These results are discussed in relation to observations of oscillatory dynamics and the function of melatonin and peroxidase in activated neutrophils.  相似文献   

2.
With a view to checking the presence of melatonin in the pineal gland of the cow, in the present work we used six adult animals, ranging in age from one to six years, which were sacrificed at dawn. Sections of 6 micro m thickness of Bouin-fixed and paraffin-embedded pineal glands were incubated in an anti-melatonin serum, which was provided by the Institute for Molecular and Cellular Recognition, Gunma University, Maebshi, Japan. After incubation and successive washings in PBS, some of the sections were treated with the avidin-biotin-peroxidase complex (ABC) technique using antisera from Sigma, and developed with the method of Graham and Karnovsky (which employs 3,3'-diaminobenzidine and H2O2 as developer). Other sections were incubated in a goat-anti-rabbit IgG (H+L) bound to fluorochrome Cy5 for immunofluorescence studies. An intense reaction for melatonin was observed in the cytoplasm but not in the nucleus of melatonin secreting pinealocytes located in peripheral and intermediate zones of the pineal gland. Immunoabsorption of the antimelatonin primary antibody with melatonin at a dilution of 10 mM per 0.1 ml of serum prevented the reaction, as happened when any of the antisera used in the procedure were used. Immunoabsorption of anti-melatonin serum with different amounts of bovine albumin (ranging between 1/5 to 1/50) failed to inhibit the immunoreactivity. When a bovine anti-albumin antibody was employed, working with the above methods, no immunoreaction was detected. Our data suggest that the pinealocytes of cows sacrificed at dawn contain immunoreactive melatonin.  相似文献   

3.
Melatonin is a well-known hydroxyl radical (*OH) scavenger that protects DNA and lipids from free radical attack. In this paper, we studied the ability of melatonin to prevent oxidative damage to bovine serum albumin (BSA) induced by two different paradigms: the metal-catalyzed oxidation (MCO) induced by Cu(2+)/H(2)O(2) and the alkoxyl and alkylperoxyl radicals formed by the azo initiator 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH, 40 mM). The protective effects of melatonin were compared with 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox), glutathione (GSH), ascorbate, 3,4',5-trihydroxy-trans-stilbene (resveratrol, 0.1 microM-4 mM) and mannitol (50 microM-100 mM). Melatonin efficiently prevented protein modification induced by both models, as assayed by polyacrylamide gel electrophoresis and carbonyl content. Both trolox and ascorbate had an obvious pro-oxidant effect in the Cu(2+)/H(2)O(2) model, whereas both prevented BSA damage induced by AAPH. In the MCO model, the efficacy of GSH in terms of protein protection was higher than melatonin at relatively high concentrations (250 microM-4 mM); however, at lower concentrations (50-250 microM), the efficacy of melatonin was superior to GSH. D-Mannitol (50 microM-100 mM) and resveratrol did not protect BSA from the site-specific damage induced by Cu(2+)/H(2)O(2). On the other hand, the relative protective efficiency in the AAPH model was melatonin approximately trolox>GSH>ascorbate.  相似文献   

4.
Pharmacology and function of melatonin receptors   总被引:13,自引:0,他引:13  
M L Dubocovich 《FASEB journal》1988,2(12):2765-2773
The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-[125I]iodomelatonin are identical. It is proposed that 2-[125I]iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-[125I]iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. In summary, the recent advances in the pharmacological characterization of melatonin receptors in the central nervous system will further stimulate the search for potent and selective melatonin receptor agonists and antagonists, and should aid in our understanding of the mechanism of action of melatonin in mammalian brain.  相似文献   

5.
Myelosuppression is the most serious, dose limiting, toxicity of cytotoxic drugs. Efforts to protect the bone marrow have been only variably successful, and no agreement exists on how to approach this problem. Melatonin, the major hormonal product of the pineal gland, is supposed to have both chemoprotective and myelostimulatory effects. This experimental study was carried out to test these two effects on the bone marrow of rats, daily intraperitoneally injected with 100 microg melatonin. Injection of 10 mg aracytin for 10 days produced a significant (P < 0.01) decrease in red blood cells count (RBCs), total leucocytic count, as well as platelets count. When melatonin was injected along with aracytin, it would significantly increase (P < 0.05) RBC count and (P < 0.01) blood platelet count. Injection of melatonin after aracytin treatment would significantly increase (P < 0.01) RBC, total leucocytic and platelet counts in comparison with rats treated with aracytin only. The effects of melatonin were more clear in rats treated with it after aracytin injection than those treated with melatonin and aracytin at the same time. Furthermore, it was found that aracytin produced a significant (P < 0.01) decrease in serum total proteins, albumin, and significantly increased the (P < 0.01) albumin/globulin ratio. Melatonin injection would significantly increase (P < 0.01) total protein, globulin, and significantly decrease (P < 0.01) the albumin/glubulin ratio when injected either with aracytin or after aracytin treatment. These results indicate that melatonin protects bone marrow, lymphoid tissues from damaging effect of cytotoxic drugs, as well as stimulating the suppressed bone marrow.  相似文献   

6.
Melatonin receptors bind and become activated by melatonin. The melatonin-related receptor, despite sharing considerable amino acid sequence identity with melatonin receptors, does not bind melatonin and is currently an orphan G protein-coupled receptor. To investigate the structure and function of both receptors, we engineered a series of 14 chimeric receptor constructs, allowing us to determine the relative contribution of each transmembrane domain to ligand binding and receptor function. Results identified that when sequences encoding transmembrane domains 1, 2, 3, 5, or 7 of the melatonin mt(1) receptor were replaced by the corresponding domains of the melatonin-related receptor, the resultant chimeric receptors all displayed specific 2-[(125)I]iodomelatonin binding. Replacement of sequences incorporating transmembrane domains 4 or 6, however, resulted in chimeric receptors that displayed no detectable 2-[(125)I]iodomelatonin binding. The subsequent testing of a "reverse" chimeric receptor in which sequences encoding transmembrane domains 4 and 6 of the melatonin-related receptor were replaced by the corresponding melatonin mt(1) receptor sequences identified specific 2-[(125)I]iodomelatonin binding and melatonin-mediated modulation of cyclic AMP levels. To further investigate these findings, site-directed mutagenesis was performed on residues within transmembrane domain 6 of the melatonin mt(1) receptor. This identified Gly(258) (Gly(6.55)) as a critical residue required for high affinity ligand binding and receptor function.  相似文献   

7.
Inheritance of apoE4 is a strong risk factor for the development of late-onset sporadic Alzheimer's disease (AD). Several lines of evidence suggest that apoE4 binds to the Alzheimer Abeta protein and, under certain experimental conditions, promotes formation of beta-sheet structures and amyloid fibrils. Deposition of amyloid fibrils is a critical step in the development of AD. We report here that addition of melatonin to Abeta in the presence of apoE resulted in a potent isoform-specific inhibition of fibril formation, the extent of which was far greater than that of the inhibition produced by melatonin alone. This effect was structure-dependent and unrelated to the antioxidant properties of melatonin, since it could be reproduced neither with the structurally related indole N-acetyl-5-hydroxytryptamine nor with the antioxidants ascorbate, alpha-tocophenol, and PBN. The enhanced inhibitory effects of melatonin and apoE were lost when bovine serum albumin was substituted for apoE. In addition, Abeta in combination with apoE was highly neurotoxic (apoE4 > apoE3) to neuronal cells in culture, and this activity was also prevented by melatonin. These findings suggest that reductions in brain melatonin, which occur during aging, may contribute to a proamyloidogenic microenvironment in the aging brain.  相似文献   

8.
Decreased melatonin production, due to acute suppression of pineal melatonin secretion by light exposure during night work, has been suggested to underlie higher cancer risks associated with prolonged experience of night work. However, the association between light exposure and melatonin production has never been measured in the field. In this study, 24-h melatonin production and ambulatory light exposure were assessed during both night-shift and day/evening-shift periods in 13 full-time rotating shiftworkers. Melatonin production was estimated with the excretion of urinary 6-sulfatoxymelatonin (aMT6s), and light exposure was measured with an ambulatory photometer. There was no difference in total 24-h aMT6s excretion between the two work periods. The night-shift period was characterized by a desynchrony between melatonin and sleep-wake rhythms, as shown by higher melatonin production during work and lower melatonin production during sleep when working night shifts than when working day/evening shifts. Light exposure during night work showed no correlation with aMT6s excreted during the night of work (p?>?.5), or with the difference in 24-h aMT6s excretion between the two work periods (p >?.1). However, light exposure during night work was negatively correlated with total 24-h aMT6s excretion over the entire night-shift period (p?相似文献   

9.
Circadian physiology in the vertebrate retina is regulated by several neurotransmitters. In the lateral eyes of the green iguana the circadian rhythm of melatonin content peaks during the night while the rhythm of dopamine peaks during the day. In the present work, the authors explore the interaction of these 2 neurotransmitters during the circadian cycle. They depleted retinal dopamine with intravitreal injections of 6-hydroxydopamine (6-OHDA) and measured ocular melatonin content in vivo throughout 1 circadian cycle. The circadian rhythm of ocular melatonin not only persisted but increased 10-fold in amplitude. This increase was substantially reduced by the intraocular administration of dopamine. 6-OHDA-treated retinas, unlike those from untreated animals, did not express a circadian rhythm of melatonin synthesis in vitro. To deplete retinal melatonin, the authors pinealectomized iguanas and blocked retinal melatonin synthesis by depleting serotonin with intraocular injections of 5,6-dihydroxytryptamine. In animals so treated, they found that the circadian rhythm of retinal dopamine content was abolished, the levels of dopamine were lowered, and the levels of dopamine metabolites were greatly increased. The data suggest that in iguanas, the amplitude of the circadian rhythm of melatonin synthesis in the eye is suppressed by dopamine while the rhythm of dopamine depends, at least in part, on the presence of melatonin.  相似文献   

10.
The pineal hormone melatonin (N-acetyl, 5-methoxytryptamine) was recently accepted to act as an antioxidant under both in vivo and in vitro conditions. In this study, we examined the possible preventive effect of melatonin on ascorbate-Fe(2+) lipid peroxidation of rat testis microsomes and mitochondria. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids C20:4 n6 and C22:5 n6. The lipid peroxidation of testis microsomes or mitochondria produced a significant decrease of C20:4 n6 and C22:5 n6. The light emission (chemiluminescence) used as a marker of lipid peroxidation was similar in both kinds of organelles when the control and peroxidized groups were compared. Both long chain polyunsaturated fatty acids were protected when melatonin was incorporated either in microsomes or mitochondria. The melatonin concentration required to inhibit by 100% the lipid peroxidation process was 5.0 and 1.0mM in rat testis microsomes and mitochondria, respectively. IC 50 values calculated from the inhibition curve of melatonin on the chemiluminescence rates were higher in microsomes (4.98 mM) than in mitochondria (0.67 mM). The protective effect observed by melatonin in rat testis mitochondria was higher than that observed in microsomes which could be explained if we consider that the sum of C20:4 n6+C22:5 n6 in testis microsomes is two-fold greater than present in mitochondria.  相似文献   

11.
The present study tested the hypothesis that the nocturnal melatonin rhythm in the fetal sheep results from transfer across the placenta of melatonin from maternal circulation. Pregnant ewes were exposed to an artificial reverse photoperiod at about 100 days gestation (n = 6; lights on 10 h, 2200-0800 h PST). This treatment tested for entrainment in the ewe and its fetus of the 24-h pattern of melatonin production from the pineal gland. Other ewes were pinealectomized at 55 days post-breeding (n = 6), and similarly treated. Catheters were implanted and blood samples were collected between 117 and 142 days gestation at two 48-h periods, about every 0.5-4 h, to assess the pattern of melatonin in maternal and fetal circulations. In pineal-intact ewes and their fetuses, melatonin rhythms conformed to the reverse photoperiod, i.e. plasma melatonin concentrations were relatively low during the light period and significantly increased for the duration of darkness. In contrast, maternal pinealectomy abolished the melatonin rhythms in both the ewe and fetus; melatonin concentrations remained at or below the limits of detection. Pineal-intact sheep gave birth about 139 +/- 2 days (mean +/- SE, n = 4) at 1915 +/- 0.7 h and pinealectomized ewes (n = 5 of 6) lambed at 149 +/- 2 days at 0424 +/- 0.5 h. Finally, in lambs (n = 3) born to pinealectomized ewes, typical melatonin rhythms were present within the first week of life. The findings indicate that the maternal pineal gland is responsible for the 24-h pattern of melatonin in the ewe and its fetus during the last trimester of pregnancy.  相似文献   

12.
During our studies to establish a method for identifying tryptamine-related substances in human urine, we detected three large peaks of unknown origin in an HPLC chromatogram. Fluorometric HPLC and HPLC-TOF-MS/MS analyses led to the identification of these substances as 6-sulphatoxymelatonin, 5-sulphatoxydiacetyltryptamine, and reduced melatonin. This is the first report of the latter two compounds in human urine. Here, we report the results of two fluorometric HPLC assays of these three substances, as well as melatonin, 6-hydroxymelatonin, and 5-hydroxydiacetyltryptamine, using synthesized standards and discuss the possibility that 5-hydroxydiacetyltryptamine (the parent substance of 5-sulphatoxydiacetyltryptamine) and reduced melatonin have radical scavenging activity.  相似文献   

13.
Melatonin (N-acetyl-5-methoxytryptamine) is the main secretory product of the pineal gland in all mammals including humans, but it is also produced in other organs. It has been previously demonstrated to be a powerful organ-protective substance under oxidative stress conditions. The aim of this study was to evaluate the protective effect of melatonin in several organs such as heart, lung, kidney, and of the reproductive system, such as testis and epididymis in animals exposed to intermittent hypobaric hypoxia and therefore exposed to oxidative stress and analyzed by lipid peroxidation. Ten-week-old male Wistar rats were divided into 6 groups for 96 hours during 32 days under: 1) Normobaric conditions, 2) plus physiologic solution, 3) plus melatonin, 4) intermittent hypobaric hypoxia, 5 plus physiologic solution and 6) plus melatonin. The animals were injected with melatonin (10 mg/kg body weight) at an interval of 96 hours during 32 days. Results indicated that melatonin decreased lipid peroxidation in heart, kidneys and lung under intermittent hypobaric hypoxia conditions. However, it did not exhibit any protective effect in liver, testis, epididymis and sperm count.  相似文献   

14.
The present study was conducted to describe the impact of circadian rhythm on melatonin levels and redox statusunder three photoperiods (12L:12D, 0L:24D, and 24L:0D) in head and hemolymph of Spodoptera litura. Melatonin is an powerful antioxidant and controls the reproduction of organisms. In this study, melatonin levels, Arylalkylamine N-acetyltransferase(AA-NAT), and antioxidant enzyme activities were analyzed. Results showed melatonin, AA-NAT levels in hemolymph were significantly (p < 0.05) higher during the dark period than during LL regime. HPLC chromatogram of the insect head and hemolymph showed 5 peaks while hemolymph showed 6 peaks in LD, and LLregimes. The day–night changes of melatonin increased the antioxidant enzymes (GST, CAT, POX) persisted in the insect hemolymph, but were suppressed by constant light. The present study leads us to speculate that synthesis and release of melatonin in the S.litura head occur as circadian rhythm and light has an inhibitory effect on melatonin synthesis.  相似文献   

15.
Melatonin concentrations in serum, as well as urinary levels of its main metabolite, 6-sulphatoxymelatonin, decrease with age. In the course of aging, the frequency of heart diseases, both acute and chronic, systematically increases. The evidence from the last 10 years suggests that melatonin influences the cardiovascular system. The presence of vascular melatoninergic receptors/binding sites has been demonstrated; these receptors are functionally linked with vasoconstrictor or vasodilatory effects of melatonin. Melatonin can contribute in cardioprotection of the rat heart, following myocardial ischemia. It has been shown that patients with coronary heart disease have a low melatonin production rate, especially those with higher risk of cardiac infarction and/or sudden death. There are clinical data reporting some alterations of melatonin in human stroke and coronary heart disease. The suprachiasmatic nucleus and, possibly, the melatoninergic system may also modulate cardiovascular rhythmicity. Hypercholesterolemia and hypertension are the other age-related symptoms. People with high levels of LDL-cholesterol have low levels of melatonin. It has been shown that melatonin suppresses the formation of cholesterol by 38% and reduces LDL accumulation by 42%. A 10-20% reduction of cholesterol concentration in women using the B-oval pill has been observed. It is a very important because, even a 10-15% reduction in blood cholesterol concentration has bee shown to result in a 20 to 30% decrease in the risk of coronary heart disease. People with hypertension have lower melatonin levels than those with normal blood pressure. The administration of the hormone in question declines blood pressure to normal range. It has been observed that melatonin, even in a dose 1 mg, reduced blood pressure and decreased catecholamine level after 90 min in human subjects. Melatonin may reduce blood pressure via the following mechanisms: 1) by a direct effect on the hypothalamus; 2) as an antioxidant which lowers blood pressure; 3) by decreasing the level of catecholamines, or 4) by relaxing the smooth muscle in the aorta wall.  相似文献   

16.
Although the developing sheep can produce an appropriately timed melatonin rhythm as early as 1 week after birth, it is not known whether the lamb is able to adjust its melatonin rhythm to a change in daylength. The ability of the young lamb to entrain its pattern of melatonin secretion to a new photoperiod was determined in the present study. Eight female lambs and their mothers were raised in long days (LD 16:8) beginning 2 weeks postpartum. At 7 weeks of age, the time of lights-off was advanced 8 hr, the short-day photoperiod then being LD 8:16; the time of lights-on remained unchanged. Concentrations of melatonin were measured in blood samples collected hourly on days - 1, 0, 2, 4, 6, and 13 relative to the light change. On day 0, all mothers and daughters had advanced the onset of melatonin secretion by at least 1 hr, and by day 13, 12 of 16 had completely entrained to the new photoperiod. The rate of entrainment among individuals varied; the mean rate for lambs and mothers did not differ. This study provides evidence that the melatonin-rhythm-generating system matures shortly after birth.  相似文献   

17.
The protective effect of melatonin, 6-hydroxymelatonin and N-acetylserotonin against alpha-naphthylisothiocyanate (ANIT)-induced liver injury was investigated and compared in rats injected once with the hepatotoxicant (75 mg/kg body weight). In rats injected with ANIT alone, liver injury with cholestasis developed within 24 h, as indicated by both serum levels of alanine aminotransferase (SGPT) and aspartic acid aminotransferase (SGOT) activities and serum total bilirubin concentration. The administration of melatonin or 6-hydroxymelatonin (10 mg/kg body weight) to ANIT-injected rats reduced significantly the serum levels of both SGPT and SGOT and the serum total bilirubin concentration. For all hepatic biochemical markers, melatonin was more effective that 6-hydroxymelatonin. By comparison, the administration of N-acetylserotonin (10 mg/kg body weight) to ANIT-injected rats did not reduce the serum levels of either hepatic enzymes or the serum total bilirubin concentration. In ANIT-injected rats, hepatic lipid peroxidation (LPO) was significantly higher than in control animals and this increase was significantly reduced by either melatonin, 6-hydroxymelatonin or N-acetylserotonin. Furthermore, ANIT treatment caused a significant reduction in liver microsomal membrane fluidity and this reduction was completely reversed by the three indoles. The liver from ANIT-injected rats showed several histopathological alterations; above all there was an acute infiltration of polymorphonuclear neutrophils and an increase in the number of apparent apoptotic hepatocytes. The concurrent administration of melatonin reduced the severity of all morphological alterations, specially the neutrophil infiltration and the number of presumed apoptotic cells. On the contrary, the administration of 6-hydroxymelatonin or N-acetylserotonin did not provide any protective effect in terms of the histopathological alterations. These results indicate that melatonin protects against ANIT-induced liver injury with cholestasis in rats, and suggests that this protective effect is likely due to its antioxidant properties and above all to its capacity to inhibit liver neutrophil infiltration, a critical factor in the pathogenesis of ANIT-induced liver injury. 6-hydroxymelatonin, although able to provide partial protection against the ANIT-induced hepatic injury, probably through its antioxidant properties by mechanisms that are unclear, was unable to reduce neutrophil infiltration. Finally, N-acetylserotonin in the experimental conditions of this study, only exhibited some antioxidant protection but had no protective effect against ANIT-induced hepatic damage.  相似文献   

18.
Carbon tetrachloride (CCl4) is a volatile organic chemical, which causes tissue damage, especially to the liver and kidney. In experimental animals it has been shown to be carcinogenic. This study was designed to evaluate the effects of exogenous melatonin administration on the CCl4-induced changes of some biochemical parameters in rat blood. Twenty-four male Wistar rats were randomly divided into three equal groups: Control, CCl4 and CCl4 plus melatonin (CCl4+MEL). Rats in CCl4 group were injected subcutaneously with CCl4 0.5 ml/kg in olive oil while rats in CCl4+MEL group were injected with CCl4 (0.5 ml/kg) plus melatonin (25 mg/kg in 10% ethanol) every other day for one month. Control rats were treated with olive oil. Serum urea, creatinine, total protein, albumin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total and conjugated bilirubin, alkaline phosphatase (ALP), gamma-glutamyl transferase (gamma-GT), total iron, and magnesium levels were determined. Serum AST, ALT, total and conjugated bilirubin, ALP, gamma-GT, and total iron levels were significantly higher in CCl4-treated rats than in the controls, while urea, total protein, and albumin levels were significantly lower. Melatonin treatment did not cause a significantly change in serum urea, total protein, and albumin levels. However, the elevations in AST, ALT, total and conjugated bilirubin, ALP, gamma-GT, and total iron levels induced by CCl4 injections were significantly reduced by melatonin. On the other hand, melatonin administration significantly decreased serum magnesium levels. These results indicate that melatonin could be a protective agent against the CCl4 toxicity in rats, most likely through its antioxidant and free radical scavenger effects.  相似文献   

19.
Metamorphosis of Rana pipiens tadpoles may be retarded when the light phase of the light/dark (LD) cycle is shortened or when thyroxine (T4) is given in the dark because melatonin peaks during the dark. Injection of premetamorphic tadpoles in spontaneous metamorphosis with melatonin (15 μg) retarded tail growth and hindlimb development on 18L:6D but had no significant effect on 6L:18D. During induced metamorphosis (30 μg/liter T4), melatonin injections retarded tail resorption on 18L:6D and accelerated it on 6L:18D, but did not affect the hindlimb. When melatonin was injected during T4 immersion at different times in the photophase on 18L:6D (L onset 0800 hr), tail regression was retarded by melatonin at 1430 or 2030 hr. At 0830 hr, shrinkage of tail length was accelerated whereas tail height was not affected. Tail tips in vitro induced to resorb by 0.2 μg/ml T4 in Niu-Twitty solution regressed more slowly in the presence of melatonin (10 or 15 μg/ml) than with T4 alone on both 6L:18D and 18L:6D. The findings implicate melatonin in LD cycle effects on tadpole metamorphic rate in vivo , show the importance of the time of melatonin injections, and indicate that melatonin antagonizes the metamorphic action of T4 at the tissue level.  相似文献   

20.
In the present study, oxidative stress in diabetic model and the effect of garlic oil or melatonin treatment were examined. Streptozotocin (60 mg/kg body weight, i.p.)-induced diabetic rats, showed a significant increase of plasma glucose, total lipids, triglyceride, cholesterol, lipid peroxides, nitric oxide and uric acid. Concomitantly, significant decreases in the levels of antioxidants ceruloplasmin, albumin and total thiols were found in the plasma of diabetic rats. Lipid peroxide levels were significantly increased in erythrocyte lysate and in homogenates of liver and kidney, while superoxide dismutase (SOD) activities were decreased in tissue homogenates of liver and kidney. Treatment of diabetic rats with garlic oil (10 mg/kg i.p.) or melatonin (200 microg/kg i.p.) for 15 days significantly increased plasma levels of total thiol, ceruloplasmin activities, albumin. Lipid peroxides, uric acid, blood glucose, total lipid, triglyceride and cholesterol were decreased significantly after treatment with garlic oil or melatonin. Nitric oxide levels were decreased significantly in rats treated with melatonin only. In erythrocytes lysate, glutathione S-transferase (GST) activities were increased significantly in rats treated with garlic oil or melatonin, while lipid peroxides decreased significantly and total thiol increased significantly in melatonin or garlic oil treatment, respectively. In liver homogenates of rats treated with garlic or melatonin, lipid peroxides were decreased significantly, and GST activities increased significantly, while SOD activities were increased significantly in liver and kidney after garlic or melatonin treatment. The results suggest that garlic oil or melatonin may effectively normalize the impaired antioxidants status in streptozotocin induced-diabetes. The effects of these antioxidants of both agents may be useful in delaying the complicated effects of diabetes as retinopathy, nephropathy and neuropathy due to imbalance between free radicals and antioxidant systems. Moreover, melatonin may be more powerful free radical scavenger than garlic oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号