首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The innate immune response is of pivotal importance in defending the mucosal barriers of the body against pathogenic attack. The list of proteins that contribute to this defense mechanism is constantly being updated. In this review we introduce a novel family of secreted proteins, palate, lung, and nasal epithelium clones (PLUNCs), that are expressed in the mouth, nose and upper airways of humans, mice, rats and cows. In humans, PLUNC genes are located in a compact cluster on chromosome 20, with similar loci being found in synteneic locations in other species. The protein products of this gene cluster are predicted to be structural homologues of the human lipopolysaccharide binding proteins, lipopolysaccharide binding-protein (LBP) and bacterial permeability-increasing protein (BPI), which are known mediators of host defense against Gram-negative bacteria. On the basis of these observations we outline why we believe PLUNC proteins mediate host defense functions in the oral, nasal and respiratory epithelia.  相似文献   

2.
Although gene expression studies have shown that human PLUNC (palate, lung and nasal epithelium clone) proteins are predominantly expressed in the upper airways, nose and mouth, and proteomic studies have indicated they are secreted into airway and nasal lining fluids and saliva, there is currently little information concerning the localization of human PLUNC proteins. Our studies have focused on the localization of three members of this protein family, namely SPLUNC1 (short PLUNC1), SPLUNC2 and LPLUNC1 (long PLUNC1). Western blotting has indicated that PLUNC proteins are highly glycosylated, whereas immunohistochemical analysis demonstrated distinct patterns of expression. For example, SPLUNC2 is expressed in serous cells of the major salivary glands and in minor mucosal glands, whereas SPLUNC1 is expressed in the mucous cells of these glands. LPLUNC1 is a product of a population of goblet cells in the airway epithelium and nasal passages and expressed in airway submucosal glands and minor glands of the oral and nasal cavities. SPLUNC1 is also found in the epithelium of the upper airways and nasal passages and in airway submucosal glands, but is not co-expressed with LPLUNC1. We suggest that this differential expression may be reflected in the function of individual PLUNC proteins.  相似文献   

3.
Trypanosomatids are protozoan parasites that cause human and animal disease. Trypanosoma brucei telomeric ESs (expression sites) contain genes that are critical for parasite survival in the bloodstream, including the VSG (variant surface glycoprotein) genes, used for antigenic variation, and the SRA (serum-resistance-associated) gene, which confers resistance to lysis by human serum. In addition, ESs contain ESAGs (expression-site-associated genes), whose functions, with few exceptions, have remained elusive. A bioinformatic analysis of the ESAG5 gene of T. brucei showed that it encodes a protein with two BPI (bactericidal/permeability-increasing protein)/LBP (lipopolysaccharide-binding protein)/PLUNC (palate, lung and nasal epithelium clone)-like domains and that it belongs to a multigene family termed (GR)ESAG5 (gene related to ESAG5). Members of this family are found with various copy number in different members of the Trypanosomatidae family. T. brucei has an expanded repertoire, with multiple ESAG5 copies and at least five GRESAG5 genes. In contrast, the parasites of the genus Leishmania, which are intracellular parasites, have only a single GRESAG5 gene. Although the amino acid sequence identity between the (GR)ESAG5 gene products between species is as low as 15-25%, the BPI/LBP/PLUNC-like domain organization and the length of the proteins are highly conserved, and the proteins are predicted to be membrane-anchored or secreted. Current work focuses on the elucidation of possible roles for this gene family in infection. This is likely to provide novel insights into the evolution of the BPI/LBP/PLUNC-like domains.  相似文献   

4.
PLUNC (palate, lung and nasal epithelium clone) proteins make up the largest branch of the BPI (bactericidal/permeability-increasing protein)/LBP (lipopolysaccharide-binding protein) family of lipid-transfer proteins. PLUNCs make up one of the most rapidly evolving mammalian protein families and exhibit low levels of sequence similarity coupled with multiple examples of species-specific gene acquisition and gene loss. Vertebrate genomes contain multiple examples of genes that do not meet our original definition of what is required to be a member of the PLUNC family, namely conservation of exon numbers/sizes, overall protein size, genomic location and the presence of a conserved disulfide bond. This suggests that evolutionary forces have continued to act on the structure of this conserved domain in what are likely to be functionally important ways.  相似文献   

5.
Despite being initially identified in mice, little is known about the sites of production of members of the BPI fold (BPIF) containing (PLUNC) family of putative innate defence proteins in this species. These proteins have largely been considered to be specificaly expressed in the respiratory tract, and we have recently shown that they exhibit differential expression in the epithelium of the proximal airways. In this study, we have used species-specific antibodies to systematically localize two members of this protein family; BPIFA1 (PLUNC/SPLUNC1) and BPIFB1 (LPLUNC1) in adult mice. In general, these proteins exhibit distinct and only partially overlapping localization. BPIFA1 is highly expressed in the respiratory epithelium and Bowman??s glands of the nasal passages, whereas BPIFB1 is present in small subset of goblet cells in the nasal passage and pharynx. BPIFB1 is also present in the serous glands in the proximal tongue where is co-localised with the salivary gland specific family member, BPIFA2E (parotid secretory protein) and also in glands of the soft palate. Both proteins exhibit limited expression outside of these regions. These results are consistent with the localization of the proteins seen in man. Knowledge of the complex expression patterns of BPIF proteins in these regions will allow the use of tractable mouse models of disease to dissect their function.  相似文献   

6.
Antimicrobial peptides provide a defense system against microorganisms. One class of these molecules binds lipophilic substrates and is therefore directed against gram-negative bacteria. This family includes proteins related to bactericidal/permeability-increasing protein (BPI). We characterized an approximately 100-kb cluster of three human genes named RYSR, RYA3, and RY2G5 that are related to the BPI family. The RY cluster maps to 20q11.21, >5 Mb upstream of the BPI cluster. The RY and BPI genes have similar exon structures, indicating that they were derived by duplication from a common ancestor. We identified mouse BPI-related and RY orthologues in syntenic regions, indicating that the gene family expanded before mouse and human diverged. Expression analyses show that RYs are strongly expressed in the olfactory epithelium, suggesting that they also could act as odorant transporters or detoxification agents in the olfactory system. Together, these data show how mammals diversified their antimicrobial defenses/olfactory pathways through a duplication-driven adaptive selection process.  相似文献   

7.
Long PLUNC1 (LPLUNC1, C20orf114) is a member of a family of poorly described proteins (PLUNCS) expressed in the upper respiratory tract and oral cavity, which may function in host defence. Although it is one of the most highly expressed genes in the upper airways and has been identified in sputum and nasal secretions by proteomic studies, localisation of LPLUNC1 protein has not yet been described. We developed affinity purified antibodies and localised the protein in tissues of the human respiratory tract, oro- and nasopharynx. We have complemented these studies with analysis of LPLUNC1 expression in primary human lung cell cultures and used Western blotting to study the protein in cell culture secretions and in BAL. LPLUNC1 is a product of a population of goblet cells in the airway epithelium and nasal passages and is also present in airway submucosal glands and minor glands of the oral and nasal cavities. The protein is not expressed in peripheral lung epithelial cells. LPLUNC1 is present in bronchoalveolar lavage fluid as two glycosylated isoforms and primary airway epithelial cells produce identical proteins as they undergo mucociliary differentiation. Our results suggest that LPLUNC1 is an abundant, secreted product of goblet cells and minor mucosal glands of the respiratory tract and oral cavity and suggest that the protein functions in the complex milieu that protects the mucosal surfaces in these locations.  相似文献   

8.
Proteins of the BPI (bactericidal/permeability-increasing protein)-like family contain either one or two tandem copies of a fold that usually provides a tubular cavity for the binding of lipids. Bioinformatic analyses show that, in addition to its known members, which include BPI, LBP [LPS (lipopolysaccharide)-binding protein)], CETP (cholesteryl ester-transfer protein), PLTP (phospholipid-transfer protein) and PLUNC (palate, lung and nasal epithelium clone) protein, this family also includes other, more divergent groups containing hypothetical proteins from fungi, nematodes and deep-branching unicellular eukaryotes. More distantly, BPI-like proteins are related to a family of arthropod proteins that includes hormone-binding proteins (Takeout-like; previously described to adopt a BPI-like fold), allergens and several groups of uncharacterized proteins. At even greater evolutionary distance, BPI-like proteins are homologous with the SMP (synaptotagmin-like, mitochondrial and lipid-binding protein) domains, which are found in proteins associated with eukaryotic membrane processes. In particular, SMP domain-containing proteins of yeast form the ERMES [ER (endoplasmic reticulum)-mitochondria encounter structure], required for efficient phospholipid exchange between these organelles. This suggests that SMP domains themselves bind lipids and mediate their exchange between heterologous membranes. The most distant group of homologues we detected consists of uncharacterized animal proteins annotated as TM (transmembrane) 24. We propose to group these families together into one superfamily that we term as the TULIP (tubular lipid-binding) domain superfamily.  相似文献   

9.
Saliva influences rumen function in cattle, yet the biochemical role for most of the bovine salivary proteins (BSPs) has yet to be established. Two cDNAs (BSP30a and BSP30b) from bovine parotid salivary gland were cloned and sequenced, each coding for alternate forms of a prominent protein in bovine saliva. The BSP30 cDNAs share 96% sequence identity with each other at the DNA level and 83% at the amino acid level, and appear to arise from separate genes. The predicted BSP30a and BSP30b proteins share 26-36% amino acid identity with parotid secretory protein (PSP) from mouse, rat and human. BSP30 and PSP are in turn more distantly related to a wider group of proteins that includes lung-specific X protein, also known as palate, lung, and nasal epithelium clone (LUNX/PLUNC), von Ebner's minor salivary gland protein (VEMSGP), bactericidal permeability increasing protein (BPI), lipopolysaccharide binding protein (LBP), cholesteryl ester transfer protein (CETP), and the putative olfactory ligand-binding proteins RYA3 and RY2G5. Bovine cDNAs encoding homologs of LUNX/PLUNC and VEMSGP were isolated and sequenced. Northern blot analysis showed that LUNX/PLUNC, BSP30 and VEMSGP are expressed in bovine salivary tissue and airways, and that they have non-identical patterns of expression in these tissues. The expression of both BSP30a and BSP30b is restricted to salivary tissue, but within this tissue they have distinct patterns of expression. The proximity of the human genes coding for the PSP/LBP superfamily on HSA20q11.2, their similar amino acid sequence, and common exon segmentation strongly suggest that these genes evolved from a common ancestral gene. Furthermore, they imply that the BSP30a and BSP30b proteins may have a function in common with other members of this gene family.  相似文献   

10.
Although the biology the PLUNC (recently renamed BPI fold, BPIF) family of secreted proteins is poorly understood, multiple array based studies have suggested that some are differentially expressed in lung diseases. We have examined the expression of BPIFB1 (LPLUNC1), the prototypic two-domain containing family member, in lungs from CF patients and in mouse models of CF lung disease. BPIFB1 was localized in CF lung samples along with BPIFA1, MUC5AC, CD68 and NE and directly compared to histologically normal lung tissues and that of bacterial pneumonia. We generated novel antibodies to mouse BPIF proteins to conduct similar studies on ENaC transgenic (ENaC-Tg) mice, a model for CF-like lung disease. Small airways in CF demonstrated marked epithelial staining of BPIFB1 in goblet cells but staining was absent from alveolar regions. BPIFA1 and BPIFB1 were not co-localised in the diseased lungs. In ENaC-Tg mice there was strong staining of both proteins in the airways and luminal contents. This was most marked for BPIFB1 and was noted within 2?weeks of birth. The two proteins were present in distinct cells within epithelium. BPIFB1 was readily detected in BAL from ENaC-Tg mice but was absent from wild-type mice. Alterations in the expression of BPIF proteins is associated with CF lung disease in humans and mice. It is unclear if this elevation of protein production, which results from phenotypic alteration of the cells within the diseased epithelium, plays a role in the pathogenesis of the disease.  相似文献   

11.

Background

The PLUNC (“Palate, lung, nasal epithelium clone”) protein is an abundant secretory product of epithelia present throughout the conducting airways of humans and other mammals, which is evolutionarily related to the lipid transfer/lipopolysaccharide binding protein (LT/LBP) family. Two members of this family - the bactericidal/permeability increasing protein (BPI) and the lipopolysaccharide binding protein (LBP) - are innate immune molecules with recognized roles in sensing and responding to Gram negative bacteria, leading many to propose that PLUNC may play a host defense role in the human airways.

Methodology/Principal Findings

Based on its marked hydrophobicity, we hypothesized that PLUNC may be an airway surfactant. We found that purified recombinant human PLUNC greatly enhanced the ability of aqueous solutions to spread on a hydrophobic surface. Furthermore, we discovered that PLUNC significantly reduced surface tension at the air-liquid interface in aqueous solutions, indicating novel and biologically relevant surfactant properties. Of note, surface tensions achieved by adding PLUNC to solutions are very similar to measurements of the surface tension in tracheobronchial secretions from humans and animal models. Because surfactants of microbial origin can disperse matrix-encased bacterial clusters known as biofilms [1], we hypothesized that PLUNC may also have anti-biofilm activity. We found that, at a physiologically relevant concentration, PLUNC inhibited biofilm formation by the airway pathogen Pseudomonas aeruginosa in an in vitro model.

Conclusions/Significance

Our data suggest that the PLUNC protein contributes to the surfactant properties of airway secretions, and that this activity may interfere with biofilm formation by an airway pathogen.  相似文献   

12.
腭、肺及鼻咽上皮克隆(palate,lung,and nasal epithelium clone,PLUNC) 家族为一新近发现的具有宿主防御功能的蛋白质家族,它们大多存在于呼吸道上皮与消化道上皮的表面,在上皮组织与外界各种信号之间起着信号传递中介与信号执行分子的作用.在迄今为止发现的人类10个PLUNC家族成员中,我们所克隆的NASG基因即为这一免疫保护分子家族的成员,对其结构与功能分析表明,它属于SPLUNC1 (short palate,lung,and nasal epithelium clone 1) 的全新转录本,具有杀菌/ 渗透增强蛋白质结构域,能对外来物理及化学刺激做出反应,并具有抗微生物、清除有害化学物质、抗肿瘤等多重功效.SPLUNC1 作为上呼吸道的一种新的天然免疫保护分子,在维持上呼吸道的正常生理活动以及抗炎杀菌抑瘤中起着重要作用.  相似文献   

13.
14.
Li A  Tian X  Sung SW  Somlo S 《Genomics》2003,81(6):596-608
Mutations to the prototypical members of the two general classes of polycystins, polycystin-1 encoded by PKD1 and polycystin-2 encoded by PKD2, underlie autosomal-dominant polycystic kidney disease. Here we report the identification of a pair of genes homologous to PKD1 from both the human and mouse genomes. PKD1L2 and PKD1L3 are located on human chromosome 16q22-q23 and mouse chromosome 8 and are alternatively spliced. The human and mouse forms of PKD1L2 are highly conserved, with each one consisting of 43 exons and approximately 2,460 codons. PKD1L3 shows regional sequence divergence, with the mouse form having two additional exons and a much larger exon 5. The predicted protein products of PKD1L2 and PKD1L3 contain the combination of GPS and PLAT/LH2 domains that uniquely define them as polycystin-1 family members. They are predicted to have 11 membrane-spanning regions with a large extracellular domain consistent with the proposed receptor function of this protein family. PKD1L2 and PKD1L3 contain strong ion channel signature motifs that suggest their possible function as components of cation channel pores. Polycystin-1-related proteins may not only regulate channels, but may actually be part of the pore-forming unit.  相似文献   

15.
The chicken egg possesses physical and chemical barriers to protect the embryo from pathogens. OCX-36 (ovocalyxin-36) was suggested to be a 36?kDa eggshell-specific protein that is secreted by the regions of the oviduct responsible for eggshell formation. Its expression is strongly up-regulated during shell calcification. This protein was also detected in vitelline membrane and expressed in gut tissues. Analysis of the OCX-36 protein sequence revealed that OCX-36 is related to the BPI (bactericidal permeability-increasing proteins)/LBP [LPS (lipopolysaccharide)-binding proteins]/PLUNC (palate, lung and nasal epithelium clone) superfamily, and that there are strong similarities between the exon/intron organization of the mammalian LBP/BPI and the avian OCX-36 genes. A recent study revealed that OCX-36 originates from a tandem duplication of an ancestral BPI/LBP/PLUNC gene, after the divergence of birds and mammals. Its antimicrobial activity was recently investigated and it was shown that OCX-36 binds to LPS from Escherichia coli. High-throughput methodologies have led to the identification of approximately 1000 new egg proteins. Among these are LBP/BPI proteins that might play a role in the natural defences of the egg to protect the embryo during its development in the external milieu, and may function to keep the table egg free of pathogens. The function of these BPI-like molecules is the subject of intense research to characterize their putative LPS-binding properties and antimicrobial activity.  相似文献   

16.
PLUNC (palate, lung and nasal epithelium clone)-associated gene originally referred to one gene, but now has been extended to represent a gene family that consists of a number of genes with peptide sequence homologies and predicted structural similarities. PLUNC-like proteins display sequence homology with BPI (bactericidal/permeability-increasing protein), a 456-residue cationic protein produced by precursors of polymorphonuclear leucocytes that have been shown to possess both bactericidal and LPS (lipopolysaccharide)-binding activities. The human PLUNC is also known as LUNX (lung-specific X protein), NASG (nasopharyngeal carcinoma-related protein) and SPURT (secretory protein in upper respiratory tract). The gene originally named PLUNC is now recognized as SPLUNC1. Its gene product SPLUNC1 is a secretory protein that is abundantly expressed in cells of the surface epithelium in the upper respiratory tracts and secretory glands in lung, and in the head and the neck region. The functional role of SPLUNC1 in innate immunity has been suggested but not clearly defined. The present review describes recent findings that support antimicrobial and anti-inflammatory functions of SPLUNC1 in Gram-negative bacteria-induced respiratory infection.  相似文献   

17.
Members of the protein family having similarity to BPI (bactericidal/permeability increasing protein) (the BPI-like proteins), also known as the PLUNC (palate, lung and nasal epithelium clone) family, have been found in a range of mammals; however, those in species other than human or mouse have been relatively little characterized. Analysis of the BPI-like proteins in cattle presents unique opportunities to investigate the function of these proteins, as well as address their evolution and contribution to the distinct physiology of ruminants. The present review summarizes the current understanding of the nature of the BPI-like locus in cattle, including the duplications giving rise to the multiple BSP30 (bovine salivary protein 30?kDa) genes from an ancestral gene in common with the single PSP (parotid secretory protein) gene found in monogastric species. Current knowledge of the expression of the BPI-like proteins in cattle is also presented, including their pattern of expression among tissues, which illustrate their independent regulation at sites of high pathogen exposure, and the abundance of the BSP30 proteins in saliva and salivary tissues. Finally, investigations of the function of the BSP30 proteins are presented, including their antimicrobial, lipopolysaccharide-binding and bacterial aggregation activities. These results are discussed in relation to hypotheses regarding the physiological role of the BPI-like proteins in cattle, including the role they may play in host defence and the unique aspects of digestion in ruminants.  相似文献   

18.
Yanase H  Sugino H  Yagi T 《Genomics》2004,83(4):717-726
CNR/Pcdhalpha family proteins are known as synaptic cadherins and Reelin receptors. Here we report the complete genomic sequence and organization of the rat CNR. The rat CNR cluster encodes 15 variable and 3 constant exons. The genomic organizations of the rat, mouse, and human CNR/Pcdhalpha are orthologous. The percentage identity of the coding regions between the rat and the mouse is 93.6% on average at the nucleic acid level, and between rat and human it is 82.8%. The rat CNRs (v1-v13) also contain an RGD motif in the extracellular cadherin 1 domains and cysteine repeats that are characteristic of the transmembrane and cytoplasmic domains of CNR proteins. The number of variable exons in the rat CNR cluster is identical to that of the human. The rat CNR cluster has one more variable exon than is found in laboratory mouse strains, because in the mouse a variable exon located between v7 and v8 is divided by the insertion of a retrotransposon. This exon is not disrupted in the rat, in which it is transcribed. By in silico analysis, CNR/Pcdhalpha was also mapped to rat chromosome 18, but the orientation was opposite for the mouse CNR/Pcdhalpha gene cluster. The relative expression profiles of the rat CNRs (v1-v13) show that all the CNRs are transcribed, but there are variations in the expression ratios among the CNRs.  相似文献   

19.
The determination of possible biomarkers in nasal secretion of healthy subjects can have a role in early diagnosis of diseases such as rhinosinusitis. For this purpose, nasal lavage fluids (NLFs) from ten volunteers, collected before and after they had been submitted to nasal provocations, were investigated. Separation and analysis of proteins present in this complex matrix was performed using a capillary liquid chromatography-electrospray-quadrupole-time of flight mass spectrometry equipment. From among a total of 111 proteins found (89 known and two unknown proteins), 42 of which had never been previously described in this fluid, such as Deleted in Malignant Brain Tumors 1 isoform a precursors, and cytoskeletal proteins were identified with high statistical score. Three proteins of palate lung nasal epithelial clone (PLUNC) family: SPLUNC1, LPLUNC1, and LPLUNC2 were identified. Proteins involved in innate (27%) and acquired immunity (21%) systems were major components of NLF. Cellular (52% of all proteins identified) such as cytoskeletal (33%), functional (15%), and regulatory (4%) proteins, normally present in the nasal cavity, have also been identified. The proteomic approach presented here allowed us to identify the proteins involved in acquired and innate immune response in the nose against microbial infections and unclean inhaled air.  相似文献   

20.
The human fungal pathogen Candida albicans colonizes and invades a wide range of host tissues. Adherence to host constituents plays an important role in this process. Two members of the C. albicans Als protein family (Als1p and Als5p) have been found to mediate adherence; however, the functions of other members of this family are unknown. In this study, members of the ALS gene family were cloned and expressed in Saccharomyces cerevisiae to characterize their individual functions. Distinct Als proteins conferred distinct adherence profiles to diverse host substrates. Using chimeric Als5p-Als6p constructs, the regions mediating substrate-specific adherence were localized to the N-terminal domains in Als proteins. Interestingly, a subset of Als proteins also mediated endothelial cell invasion, a previously unknown function of this family. Consistent with these results, homology modeling revealed that Als members contain anti-parallel beta-sheet motifs interposed by extended regions, homologous to adhesins or invasins of the immunoglobulin superfamily. This finding was confirmed using circular dichroism and Fourier transform infrared spectrometric analysis of the N-terminal domain of Als1p. Specific regions of amino acid hypervariability were found among the N-terminal domains of Als proteins, and energy-based models predicted similarities and differences in the N-terminal domains that probably govern the diverse function of Als family members. Collectively, these results indicate that the structural and functional diversity within the Als family provides C. albicans with an array of cell wall proteins capable of recognizing and interacting with a wide range of host constituents during infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号