首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Na (and Li) currents and fluorescence transients were recorded simultaneously under voltage-clamp conditions from mouse flexor digitorum brevis fibers stained with the potentiometric dye di-8-ANEPPS to investigate the distribution of Na channels between the surface and transverse tubular system (TTS) membranes. In fibers rendered electrically passive, voltage pulses resulted in step-like fluorescence changes that were used to calibrate the dye response. The effects of Na channel activation on the TTS voltage were investigated using Li, instead of Na, because di-8-ANEPPS transients show anomalies in the presence of the latter. Na and Li inward currents (I(Na), I(Li); using half of the physiological ion concentration) showed very steep voltage dependences, with no reversal for depolarizations beyond the calculated equilibrium potential, suggesting that most of the current originates from a noncontrolled membrane compartment. Maximum peak I(Li) was ~ 30% smaller than for I(Na), suggesting a Li-blocking effect. I(Li) activation resulted in the appearance of overshoots in otherwise step-like di-8-ANEPPS transients. Overshoots had comparable durations and voltage dependence as those of I(Li). Simultaneously measured maximal overshoot and peak I(Li) were 54 ± 5% and 773 ± 53 μA/cm(2), respectively. Radial cable model simulations predicted the properties of I(Li) and di-8-ANEPPS transients when TTS access resistances of 10-20 Ω cm(2), and TTS-to-surface Na permeability density ratios in the range of 40:60 to 70:30, were used. Formamide-based osmotic shock resulted in incomplete detubulation. However, results from a subpopulation of treated fibers (low capacitance) provide confirmatory evidence that a significant proportion of I(Li), and the overshoot in the optical signals, arises from the TTS in normal fibers. The quantitative evaluation of the distribution of Na channels between the sarcolemma and the TTS membranes, as provided here, is crucial for the understanding of the radial and longitudinal propagation of the action potential, which ultimately govern the mechanical activation of muscle in normal and diseased conditions.  相似文献   

2.
Chloride fluxes are the main contributors to the resting conductance of mammalian skeletal muscle fibers. ClC-1, the most abundant chloride channel isoform in this preparation, is believed to be responsible for this conductance. However, the actual distribution of ClC-1 channels between the surface and transverse tubular system (TTS) membranes has not been assessed in intact muscle fibers. To investigate this issue, we voltageclamped enzymatically dissociated short fibers using a two-microelectrode configuration and simultaneously recorded chloride currents (I(Cl)) and di-8-ANEPPS fluorescence signals to assess membrane potential changes in the TTS. Experiments were conducted in conditions that blocked all but the chloride conductance. Fibers were equilibrated with 40 or 70 mM intracellular chloride to enhance the magnitude of inward I(Cl), and the specific ClC-1 blocker 9-ACA was used to eliminate these currents whenever necessary. Voltage-dependent di-8-ANEPPS signals and I(Cl) acquired before (control) and after the addition of 9-ACA were comparatively assessed. Early after the onset of stimulus pulses, di-8-ANEPPS signals under control conditions were smaller than those recorded in the presence of 9-ACA. We defined as attenuation the normalized time-dependent difference between these signals. Attenuation was discovered to be I(Cl) dependent since its magnitude varied in close correlation with the amplitude and time course of I(Cl). While the properties of I(Cl), and those of the attenuation seen in optical records, could be simultaneously predicted by model simulations when the chloride permeability (P(Cl)) at the surface and TTS membranes were approximately equal, the model failed to explain the optical data if P(Cl) was precluded from the TTS membranes. Since the ratio between the areas of TTS membranes and the sarcolemma is large in mammalian muscle fibers, our results demonstrate that a significant fraction of the experimentally recorded I(Cl) arises from TTS contributions.  相似文献   

3.
Styryl voltage-sensitive dyes (e.g., di-4-ANEPPS) have been widely and successfully used as probes for mapping membrane potential changes in cardiac cells and tissues. However, their utility has been somewhat limited because their excitation wavelengths have been restricted to the 450- to 550-nm range. Longer excitation/emission wavelength probes can minimize interference from endogenous chromophores and, because of decreased light scattering and lower absorption by endogenous chromophores, improve recording from deeper tissue layers. In this article, we report efforts to develop new potentiometric styryl dyes that have excitation wavelengths ranging above 700 nm and emission spectra extending to 900 nm. Three dyes for cardiac optical mapping were investigated in depth from several hundred dyes containing 47 variants of the styryl chromophores. Absorbance and emission spectra in ethanol and multilamellar vesicles, as well as voltage-dependent spectral changes in a model lipid bilayer, have been recorded for these dyes. Optical action potentials were recorded in typical cardiac tissues (rat, guinea pig, pig) and compared with those of di-4-ANEPPS. The voltage sensitivities of the fluorescence of these new potentiometric indicators are as good as those of the widely used ANEP series of probes. In addition, because of molecular engineering of the chromophore, the new dyes provide a wide range of dye loading and washout time constants. These dyes will enable a series of new experiments requiring the optical probing of thick and/or blood-perfused cardiac tissues.  相似文献   

4.
The spatiotemporal characteristics of the Ca(2+) release process in mouse skeletal muscle were investigated in enzymatically dissociated fibers from flexor digitorum brevis (FDB) muscles, using a custom-made two-photon microscope with laser scanning imaging (TPLSM) and spot detection capabilities. A two-microelectrode configuration was used to electrically stimulate the muscle fibers, to record action potentials (APs), and to control their myoplasmic composition. We used 125 muM of the low-affinity Ca(2+) indicator Oregon green 488 BAPTA-5N (OGB-5N), and 5 or 10 mM of the Ca(2+) chelator EGTA (pCa 7) in order to arrest fiber contraction and to constrain changes in the [Ca(2+)] close to the release sites. Image and spot data showed that the resting distribution of OGB-5N fluorescence was homogeneous along the fiber, except for narrow peaks ( approximately 23% above the bulk fluorescence) centered at the Z-lines, as evidenced by their nonoverlapping localization with respect to di-8-ANEPPS staining of the transverse tubules (T-tubules). Using spot detection, localized Ca(2+) transients evoked by AP stimulation were recorded from adjacent longitudinal positions 100 nm apart. The largest and fastest DeltaF/F transients were detected at sites flanking the Z-lines and colocalized with T-tubules; the smallest and slowest were detected at the M-line, whereas transients at the Z-line showed intermediate features. Three-dimensional reconstructions demonstrate the creation of two AP-evoked Ca(2+) release domains per sarcomere, which flank the Z-line and colocalize with T-tubules. In the presence of 10 mM intracellular EGTA, these domains are formed in approximately 1.4 ms and dissipate within approximately 4 ms, after the peak of the AP. Their full-width at half-maximum (FWHM), measured at the time that Ca(2+) transients peaked at T-tubule locations, was 0.62 mum, similar to the 0.61 mum measured for di-8-ANEPPS profiles. Both these values exceed the limit of resolution of the optical system, but their similarity suggests that at high [EGTA] the Ca(2+) domains in adult mammalian muscle fibers are confined to Ca(2+) release sites located at the junctional sarcoplasmic reticulum (SR).  相似文献   

5.
A two-microelectrode voltage clamp and optical measurements of membrane potential changes at the transverse tubular system (TTS) were used to characterize delayed rectifier K currents (IK(V)) in murine muscle fibers stained with the potentiometric dye di-8-ANEPPS. In intact fibers, IK(V) displays the canonical hallmarks of K(V) channels: voltage-dependent delayed activation and decay in time. The voltage dependence of the peak conductance (gK(V)) was only accounted for by double Boltzmann fits, suggesting at least two channel contributions to IK(V). Osmotically treated fibers showed significant disconnection of the TTS and displayed smaller IK(V), but with similar voltage dependence and time decays to intact fibers. This suggests that inactivation may be responsible for most of the decay in IK(V) records. A two-channel model that faithfully simulates IK(V) records in osmotically treated fibers comprises a low threshold and steeply voltage-dependent channel (channel A), which contributes ~31% of gK(V), and a more abundant high threshold channel (channel B), with shallower voltage dependence. Significant expression of the IK(V)1.4 and IK(V)3.4 channels was demonstrated by immunoblotting. Rectangular depolarizing pulses elicited step-like di-8-ANEPPS transients in intact fibers rendered electrically passive. In contrast, activation of IK(V) resulted in time- and voltage-dependent attenuations in optical transients that coincided in time with the peaks of IK(V) records. Normalized peak attenuations showed the same voltage dependence as peak IK(V) plots. A radial cable model including channels A and B and K diffusion in the TTS was used to simulate IK(V) and average TTS voltage changes. Model predictions and experimental data were compared to determine what fraction of gK(V) in the TTS accounted simultaneously for the electrical and optical data. Best predictions suggest that K(V) channels are approximately equally distributed in the sarcolemma and TTS membranes; under these conditions, >70% of IK(V) arises from the TTS.  相似文献   

6.
The fast potentiometric indicator di-4-ANEPPS is examined in four different preparations: lipid vesicles, red blood cells, squid giant axon, and guinea pig heart. The dye gives consistent potentiometric responses in each of these systems, although some of the detailed behavior varies. In lipid vesicles, the dye displays an increase in fluorescence combined with a red shift of the excitation spectrum upon hyperpolarization. Similar behavior is found in red cells where a dual wavelength radiometric measurement is also demonstrated. The signal-to-noise ratio of the potentiometric fluorescence response is among the best ever recorded on the voltage-clamped squid axon. The dye is shown to be a faithful and persistent monitor of cardiac action potentials with no appreciable loss of signal or deterioration of cardiac activity for periods as long as 2 hr with intermittent illumination every 10 min. These results, together with previously published applications of the dye to a spherical lipid bilayer model and to cells in culture, demonstrate the versatility of di-4-ANEPPS as a fast indicator of membrane potential.  相似文献   

7.
Voltage-sensitive fluorescent dyes have become powerful tools for the visualization of excitation propagation in the heart. However, until recently they were used exclusively for surface recordings. Here we demonstrate the possibility of visualizing the electrical activity from inside cardiac muscle via fluorescence measurements in the transillumination mode (in which the light source and photodetector are on opposite sides of the preparation). This mode enables the detection of light escaping from layers deep within the tissue. Experiments were conducted in perfused (8 mm thick) slabs of sheep right ventricular wall stained with the voltage-sensitive dye di-4-ANEPPS. Although the amplitude and signal-to-noise ratio recorded in the transillumination mode were significantly smaller than those recorded in the epi-illumination mode, they were sufficient to reliably determine the activation sequence. Penetration depths (spatial decay constants) derived from measurements of light attenuation in cardiac muscle were 0.8 mm for excitation (520 +/- 30 nm) and 1.3 mm for emission wavelengths (640 +/- 50 nm). Estimates of emitted fluorescence based on these attenuation values in 8-mm-thick tissue suggest that 90% of the transillumination signal originates from a 4-mm-thick layer near the illuminated surface. A 69% fraction of the recorded signal originates from > or =1 mm below the surface. Transillumination recordings may be combined with endocardial and epicardial surface recordings to obtain information about three-dimensional propagation in the thickness of the myocardial wall. We show an example in which transillumination reveals an intramural reentry, undetectable in surface recordings.  相似文献   

8.
Intracellular calcium handling plays an important role in cardiac electrophysiology. Using two fluorescent indicators, we developed an optical mapping system that is capable of measuring calcium transients and action potentials at 256 recording sites simultaneously from the intact guinea pig heart. On the basis of in vitro measurements of dye excitation and emission spectra, excitation and emission filters at 515 +/- 5 and >695 nm, respectively, were used to measure action potentials with di-4-ANEPPS, and excitation and emission filters at 365 +/- 25 and 485 +/- 5 nm, respectively, were used to measure calcium transients with indo 1. The percent error due to spectral overlap was small when action potentials were measured (1.7 +/- 1.0%, n = 3) and negligible when calcium transients were measured (0%, n = 3). Recordings of calcium transients, action potentials, and isochrone maps of depolarization time and the time of calcium transient onset indicated negligible error due to fluorescence emission overlap. These data demonstrate that the error due to spectral overlap of indo 1 and di-4-ANEPPS is sufficiently small, such that optical mapping techniques can be used to measure calcium transients and action potentials simultaneously in the intact heart.  相似文献   

9.
In voltage-clamp studies of single frog skeletal muscle fibers stained with the potentiometric indicator 1-(3-sulfonatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl] vinyl]pyridinium betaine (di-8 ANEPPS), fluorescence transients were recorded in response to both supercharging and step command pulses. Several illumination paradigms were utilized to study global and localized regions of the transverse tubule system (T-system). The rising phases of transients obtained from global illumination regions showed distinct accelerations when supercharging pulses were applied (95% of steady-state fluorescence achieved in 1.5 ms with supercharging pulses versus 14.6 ms with step pulses). When local transients were recorded at the edge of the muscle fiber, their kinetics resembled those of the applied waveform, but a similar relationship was not observed in transients from regions near the edge chosen to minimize the surface membrane contribution. We developed a model of the T-system capable of simulating membrane potential changes as a function of time and distance along the T-system cable and the associated fluorescence changes in regions corresponding to the experimental illumination strategies. A critical parameter was the access resistance term, for which values of 110-150 Omega.cm2 were adequate to fit the data. The results suggest that the primary mechanism through which supercharging pulses boost the kinetics of T-system voltage changes most likely involves their compensating the voltage attenuation across the access resistance at the mouth of the T-tubule.  相似文献   

10.
We have studied the spectral properties of the voltage-sensitive dye, 1-(3-sulfonatopropyl)-4-[beta [2-(di-n-octylamino)-6-naphtyl]vinyl] pyridinium betaine (di-8-ANEPPS), and the Ca(2+)-sensitive dye, fura-2, in azolectin liposomes and in isolated taste buds from mouse. We find that the fluorescence excitation spectra of di-8-ANEPPS and fura-2 are largely nonoverlapping, allowing alternate ratio measurements of membrane potential and intracellular calcium ([Ca2+]i). There is a small spillover of di-8-ANEPPS fluorescence at the excitation wavelengths used for fura-2 (340 and 360 nm). However, voltage-induced changes in the fluorescence of di-8-ANEPPS, excited at the fura-2 wavelengths, are small. In addition, di-8-ANEPPS fluorescence is localized to the membrane, whereas fura-2 fluorescence is distributed throughout the cytoplasm. Because of this, the effect of spillover of di-8-ANEPPS fluorescence in the [Ca2+]i estimate is < 1%, under the appropriate conditions. We have applied this method to study of the responses of multiple taste cells within isolated taste buds. We show that membrane potential and [Ca2+]i can be measured alternately in isolated taste buds from mouse. Stimulation with glutamate and glutamate analogs indicates that taste cells express both metabotropic and ionotropic receptors. The data suggest that the receptors responding to 2-amino-4-phosphonobutyrate (L-AP4), presumably metabotropic L-glutamate receptors, do not mediate excitatory glutamate taste responses.  相似文献   

11.
Imaging of calcium transients in skeletal muscle fibers.   总被引:2,自引:0,他引:2       下载免费PDF全文
Epifluorescence images of Ca2+ transients elicited by electrical stimulation of single skeletal muscle fibers were studied with fast imaging techniques that take advantage of the large fluorescence signals emitted at relatively long wavelengths by the dyes fluo-3 and rhod-2 in response to binding of Ca2+ ions, and of the suitable features of a commercially available CCD video camera. The localized release of Ca2+ in response to microinjection of InsP3 was also monitored to demonstrate the adequate space and time resolutions of the imaging system. The time resolution of the imager system, although limited to the standard video frequency response, still proved to be adequate to investigate the fast Ca2+ release process in skeletal muscle fibers at low temperatures.  相似文献   

12.
The bioluminescent calcium indicator aequorin was loaded into bundles of skeletal muscle fibers from the rat extensor digitorum longus by macroinjection, a technique previously applied only to cardiac muscle. After loading, the amplitude and time course of the twitch returned to control values, indicating lack of damage to the fibers. Individual light signals (i.e., calcium transients) were recorded during each twitch or tetanus without the need for signal averaging. The calcium transients obtained were qualitatively and quantitatively similar to those reported previously with microinjection of aequorin. Our data suggest that macroinjection may be the method of choice for loading aequorin into mammalian skeletal muscle.  相似文献   

13.
Placement of a cell into an external electric field causes a local charge redistribution inside and outside of the cell in the vicinity of the cell membrane, resulting in a voltage across the membrane. This voltage, termed the induced membrane voltage (also induced transmembrane voltage, or induced transmembrane potential difference) and denoted by ΔΦ, exists only as long as the external field is present. If the resting voltage is present on the membrane, the induced voltage superimposes (adds) onto it. By using one of the potentiometric fluorescent dyes, such as di-8-ANEPPS, it is possible to observe the variations of ΔΦ on the cell membrane and to measure its value noninvasively. di-8-ANEPPS becomes strongly fluorescent when bound to the lipid bilayer of the cell membrane, with the change of the fluorescence intensity proportional to the change of ΔΦ. This video shows the protocol for measuring ΔΦ using di-8-ANEPPS and also demonstrates the influence of cell shape on the amplitude and spatial distribution of ΔΦ.  相似文献   

14.
E Fluhler  V G Burnham  L M Loew 《Biochemistry》1985,24(21):5749-5755
The properties of a series of new potentiometric membrane probes have been explored. The probes all contain an (aminostyryl)pyridinium chromophore or a more highly conjugated analogue. The spectral properties of the dyes are discussed in terms of the excitation-induced charge shift from the pyridine to the aniline; this charge shift also provides the basis for the voltage dependence of the spectra according to an electrochromic mechanism. The spectral responses to a membrane potential on a hemispherical bilayer have been obtained and, grossly, are quite similar for all probes tested. The more subtle variations from dye to dye can be partially rationalized by consideration of binding parameters, the depth within the membrane, and structural factors. The most potential sensitive dye in this collection has been designated di-4-ANEPPS and has a 6-amino-2-naphthyl group in place of the p-anilino on the parent chromophore. Both the relative fluorescence emission and excitation responses have maxima of 8% per 100 mV, and these two spectra display a striking symmetry.  相似文献   

15.
Xu C  Loew LM 《Biophysical journal》2003,84(4):2768-2780
Ratiometric imaging of styryl potentiometric dyes can be used to measure the potential gradient inside the membrane (intramembrane potential), which is the sum of contributions from transmembrane potential, dipole potential, and the difference in the surface potentials at both sides of the membrane. Here changes in intramembrane potential of the bilayer membranes in two different preparations, lipid vesicles and individual N1E-115 neuroblastoma cells, are calculated from the fluorescence ratios of di-4-ANEPPS and di-8-ANEPPS as a function of divalent cation concentration. In lipid vesicles formed from the zwitterionic lipid phosphatidylcholine (PC) or from a mixture of the negatively charged lipid phosphatidylserine (PS) and PC, di-4-ANEPPS produces similar spectral changes in response to both divalent cation-induced changes in intramembrane potential and transmembrane potential. The changes in potential on addition of divalent cations measured by the fluorescence ratios of di-4-ANEPPS are consistent with a change in surface potential that can be modeled with the Gouy-Chapman-Stern theory. The derived intrinsic 1:1 association constants of Ba and Mg with PC are 1.0 and 0.4 M(-1); the intrinsic 1:1 association constants of Ba and Mg with PS are 1.9 and 1.8 M(-1). Ratiometric measurements of voltage sensitive dyes also allow monitoring of intramembrane potentials in living cells. In neuroblastoma cells, a tenfold increase of concentration of Ba, Mg, and Ca gives a decrease in intramembrane potential of 22 to 24 mV. The observed changes in potential could also be described by Gouy-Chapman theory. A surface charge density of 1 e(-)/115 A(2) provides the best fit and the intrinsic 1:1 association constants of Ba, Mg, and Ca with acidic group in the surface are 1.7, 6.1, and 25.3 M(-1).  相似文献   

16.
Numerous dyes are available or under development for probing the structural and functional properties of biological membranes. Exogenous chromophores adopt a range of orientations when bound to membranes, which have a drastic effect on their biophysical behavior. Here, we present a method that employs optical anisotropy data from three polarization-imaging techniques to establish the distribution of orientations adopted by molecules in monolayers and bilayers. The resulting probability density functions, which contain the preferred molecular tilt μ and distribution breadth γ, are more informative than an average tilt angle 〈φ〉. We describe a methodology for the extraction of anisotropy data through an image-processing technology that decreases the error in polarization measurements by about a factor of four. We use this technique to compare di-4-ANEPPS and di-8-ANEPPS, both dipolar dyes, using data from polarized 1-photon, 2-photon fluorescence and second-harmonic generation imaging. We find that di-8-ANEPPS has a lower tilt but the same distributional width. We find the distribution of tilts taken by di-4-ANEPPS in two phospholipid membrane models: giant unilamellar vesicles and water-in-oil droplet monolayers. Both models result in similar distribution functions with average tilts of 52° and 47°, respectively.  相似文献   

17.
The demarcation membrane system (DMS) is the precursor of platelet cell membranes yet little is known of its properties in living megakaryocytes. Using confocal microscopy, we now demonstrate that demarcation membranes in freshly isolated rat marrow megakaryocytes are rapidly stained by styryl membrane indicators such as di-8-ANEPPS and FM 2-10, confirming that they are invaginations of the plasma membrane and readily accessible from the extracellular space. Two-photon excitation of an extracellular indicator displayed the extensive nature of the channels formed by the DMS throughout the extranuclear volume. Under whole-cell patch clamp, the DMS is electrophysiologically contiguous with the peripheral plasma membrane such that a single capacitative component can account for the biophysical properties of all surface-connected membranes in the majority of recordings. Megakaryocyte capacitances were in the range of 64-694 pF, equivalent to 500-5500 platelets (mean value 1850). Based upon calculations for a spherical geometry, the DMS results in a 4- to 14-fold (average 8.1-fold) increase in specific membrane capacitance expressed per unit spherical surface area. This indicates a level of plasma membrane invagination comparable with mammalian skeletal muscle. Whole-cell capacitance measurements and confocal imaging of membrane-impermeant fluorescent indicators therefore represent novel approaches to monitor the DMS during megakaryocytopoiesis and thrombopoiesis.  相似文献   

18.
An improved vaseline gap voltage clamp for skeletal muscle fibers   总被引:39,自引:20,他引:19       下载免费PDF全文
A Vaseline gap potentiometric recording and voltage clamp method is developed for frog skeletal muscle fibers. The method is based on the Frankenhaeuser-Dodge voltage clamp for myelinated nerve with modifications to improve the frequency response, to compensate for external series resistance, and to compensate for the complex impedance of the current-passing pathway. Fragments of single muscle fibers are plucked from the semitendinosus muscle and mounted while depolarized by a solution like CsF. After Vaseline seals are formed between fluid pools, the fiber ends are cut once again, the central region is rinsed with Ringer solution, and the feedback amplifiers are turned on. Errors in the potential and current records are assessed by direct measurements with microelectrodes. The passive properties of the preparation are simulated by the "disk" equivalent circuit for the transverse tubular system and the derived parameters are similar to previous measurements with microelectrodes. Action potentials at 5 degrees C are long because of the absence of delayed rectification. Their shape is approximately simulated by solving the disk model with sodium permeability in the surface and tubular membranes. Voltage clamp currents consist primarily of capacity currents and sodium currents. The peak inward sodium current density at 5 degrees C is 3.7 mA/cm2. At 5 degrees C the sodium currents are smoothly graded with increasing depolarization and free of notches suggesting good control of the surface membrane. At higher temperatures a small, late extra inward current appears for small depolarizations that has the properties expected for excitation in the transverse tubular system. Comparison of recorded currents with simulations shows that while the transverse tubular system has regenerative sodium currents, they are too small to make important errors in the total current recorded at the surface under voltage clamp at low temperature. The tubules are definitely not under voltage clamp control.  相似文献   

19.
We are interested in developing fluorescence methods for quantifying lateral variations in the dipole potential across cell surfaces. Previous work in this laboratory showed that the ratio of fluorescence intensities of the voltage-sensitive dye di-8-ANEPPS using excitation wavelengths at 420 and 520 nm correlates well with measurements of the dipole potential. In the present work we evaluate the use of di-8-ANEPPS and an emission ratiometric method for measuring dipole potentials, as Bullen and Saggau (Biophys. J. 65 (1999) 2272-2287) have done to follow changes in the membrane potential in the presence of an externally applied field. Emission ratiometric methods have distinct advantages over excitation methods when applied to fluorescence microscopy because only a single wavelength is needed for excitation. We found that unlike the excitation ratio, the emission ratio does not correlate with the dipole potential of vesicles made from different lipids. A difference in the behaviour of the emission ratio in saturated compared to unsaturated lipid vesicles was noted. Furthermore, the emission ratio did not respond in the same way as the excitation ratio when cholesterol, 6-ketocholestanol, 7-ketocholesterol, and phloretin were added to dimyristoylphosphatidylcholine (DMPC) vesicles. We attribute the lack of correlation between the emission ratio and the dipole potential to simultaneous changes in membrane fluidity caused by changes in membrane composition, which do not occur when the electric field is externally applied as in the work of Bullen and Saggau. Di-8-ANEPPS can, thus, only be used via an excitation ratiometric method to quantify the dipole potential.  相似文献   

20.
The structure of a small strand of rabbit heart muscle fibers (trabecula carnea), 30–80 µ in diameter, has been examined with light and electron microscopy. By establishing a correlation between the appearance of regions of close fiber contact in light and electron microscopy, the extent and distribution of regions of close apposition of fibers has been evaluated in approximately 200 µ length of a strand. The distribution of possible regions of resistive coupling between fibers has been approximated by a model system of cables. The theoretical linear electrical properties of such a system have been analyzed and the implications of the results of this analysis are discussed. Since this preparation is to be used for correlated studies of the electrical, mechanical, and cytochemical properties of cardiac muscle, a comprehensive study of the morphology of this preparation has been made. The muscle fibers in it are distinguished from those of the rabbit papillary muscle, in that they have no triads and have a kind of mitochondrion not found in papillary muscle. No evidence of a transverse tubular system was found, but junctions of cisternae of the sarcoplasmic reticulum and the sarcolemma, peripheral couplings, were present. The electrophysiological implications of the absence of transverse tubules are discussed. The cisternae of the couplings showed periodic tubular extensions toward the sarcolemma. A regularly spaced array of Z line-like material was observed, suggesting a possible mechanism for sarcomere growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号