首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cdc7 is a serine/threonine kinase conserved from yeasts to human and is known to play a key role in the regulation of initiation at each replication origin. Its catalytic function is activated via association with the activation subunit Dbf4/activator of S phase kinase (ASK). It is known that two conserved motifs of Dbf4/ASK are involved in binding to Cdc7, and both are required for maximum activation of Cdc7 kinase. Cdc7 kinases possess unique kinase insert sequences (kinase insert I-III) that are inserted at defined locations among the conserved kinase domains. However, precise mechanisms of Cdc7 kinase activation are largely unknown. We have identified two segments on Cdc7, DAM-1 (Dbf4/ASK interacting motif-1; amino acids 448-457 near the N terminus of kinase insert III) and DAM-2 (C-terminal 10-amino acid segment), that interact with motif-M and motif-C of ASK, respectively, and are essential for kinase activation by ASK. The C-terminal 143-amino acid polypeptide (432-574) containing DAM-1 and DAM-2 can interact with Dbf4/ASK. Characterization of the purified ASK-free Cdc7 and Cdc7-ASK complex shows that ATP binding of the Cdc7 catalytic subunit requires Dbf4/ASK. However, the "minimum" Cdc7, lacking the entire kinase insert II and half of kinase insert III, binds to ATP and shows autophosphorylation activity in the absence of ASK. However, ASK is still required for phosphorylation of exogenous substrates by the minimum Cdc7. These results indicate bipartite interaction between Cdc7 and Dbf4/ASK subunits facilitates ATP binding and substrate recognition by the Cdc7 kinase.  相似文献   

2.
3.
Cdc7 (cell division cycle 7) kinase together with its activation subunit ASK (also known as Dbf4) play pivotal roles in DNA replication and contribute also to other aspects of DNA metabolism such as DNA repair and recombination. While the biological significance of Cdc7 is widely appreciated, the molecular mechanisms through which Cdc7 kinase regulates these various DNA transactions remain largely obscure, including the role of Cdc7-ASK/Dbf4 under replication stress, a condition associated with diverse (patho)physiological scenarios. In this review, we first highlight the recent findings on a novel pathway that regulates the stability of the human Cdc7-ASK/Dbf4 complex under replication stress, its interplay with ATR-Chk1 signaling, and significance in the RAD18-dependent DNA damage bypass pathway. We also consider Cdc7 function in a broader context, considering both physiological conditions and pathologies associated with enhanced replication stress, particularly oncogenic transformation and tumorigenesis. Furthermore, we integrate the emerging evidence and propose a concept of Cdc7-ASK/Dbf4 contributing to genome integrity maintenance, through interplay with RAD18 that can serve as a molecular switch to dictate DNA repair pathway choice. Finally, we discuss the possibility of targeting Cdc7, particularly in the context of the Cdc7/RAD18-dependent translesion synthesis, as a potential innovative strategy for treatment of cancer.  相似文献   

4.
5.
6.
Cdc25A is a potent tyrosine phosphatase that catalyzes specific dephosphorylation of cyclin/cyclin-dependent kinase (cdk) complexes to regulate G1 to S-phase cell cycle progression. Cdc25A mRNA levels are induced by 17beta-estradiol (E2) in ZR-75 breast cancer cells, and deletion analysis of the cdc25A promoter identified the -151 to -12 region as the minimal E2-responsive sequence. Subsequent mutation/deletion analysis showed that at least three different cis-elements were involved in activation of cdc25A by E2, namely, GC-rich Sp1 binding sites, CCAAT motifs that bind NF-Y, and E2F sites that bind DP/E2F1 proteins. Studies with inhibitors and dominant negative expression plasmids show that E2 activates cdc25A expression through activation of genomic ERalpha/Sp1 and E2F1 and cAMP-dependent activation of NF-YA. Thus, both genomic and non-genomic pathways of estrogen action are involved in induction of cdc25A in breast cancer cells.  相似文献   

7.
8.
Cdc7 is an S‐phase‐promoting kinase (SPK) that is required for the activation of replication initiation complex assembly because it phosphorylates the MCM protein complex serving as the replicative helicase in eukaryotic organisms. Cdc7 activity is undetectable in immature mouse GV oocytes, although Cdc7 protein is already expressed at the same level as in mature oocytes or early one‐cell embryos at zygotic S‐phase, in which Cdc7 kinase activity is clearly detectable. Dbf4 is a regulatory subunit of Cdc7 and is required for Cdc7 kinase activity. Dbf4 is not readily detectable in immature GV oocytes but accumulates to a level similar to that in one‐cell embryos during oocyte maturation, suggesting that Cdc7 is already activated in unfertilized eggs (metaphase II). RNAi‐mediated knockdown of maternal Dbf4 expression prevents the maturation‐associated increase in Dbf4 protein, abolishes the activation of Cdc7, and leads to the failure of DNA replication in one‐cell embryos, demonstrating that Dbf4 expression is the key regulator of Cdc7 activity in mouse oocytes. Dormant Dbf4 mRNA in immature GV oocytes is recruited by cytoplasmic polyadenylation during oocyte maturation and is dependent on MPF activity via its cytoplasmic polyadenylation element (CPE) upstream of the hexanucleotide (HEX) in the 3′ untranslated region (3′UTR). Our results suggest that Cdc7 is inactivated in immature oocytes, preventing it from the unwanted phosphorylation of MCM proteins, and the oocyte is qualified by proper maturation to proceed following embryogenesis after fertilization through zygotic DNA replication.  相似文献   

9.
Cdc7p-Dbf4p is a conserved protein kinase required for the initiation of DNA replication. The Dbf4p regulatory subunit binds Cdc7p and is essential for Cdc7p kinase activation, however, the N-terminal third of Dbf4p is dispensable for its essential replication activities. Here, we define a short N-terminal Dbf4p region that targets Cdc7p-Dbf4p kinase to Cdc5p, the single Polo kinase in budding yeast that regulates mitotic progression and cytokinesis. Dbf4p mediates an interaction with the Polo substrate-binding domain to inhibit its essential role during mitosis. Although Dbf4p does not inhibit Polo kinase activity, it nonetheless inhibits Polo-mediated activation of the mitotic exit network (MEN), presumably by altering Polo substrate targeting. In addition, although dbf4 mutants defective for interaction with Polo transit S-phase normally, they aberrantly segregate chromosomes following nuclear misorientation. Therefore, Cdc7p-Dbf4p prevents inappropriate exit from mitosis by inhibiting Polo kinase and functions in the spindle position checkpoint.  相似文献   

10.
Cdc7/Dbf4 protein kinase is required for the initiation of DNA replication in Saccharomyces cerevisiae. Cdc7/Dbf4 protein kinase is not a cyclin-dependent kinase (CDK), but is regulated in a similar fashion in that the Cdc7 kinase subunit is inactive in the absence of the regulatory subunit Dbf4. In contrast to what is known about CDKs, Cdc7/Dbf4 protein kinase is shown to be an oligomer in the cell in this report. Genetic data that support this claim include interallelic complementation between several cdc7ts alleles and the cdc7T281A allele and also the results of experiments using the two-hybrid system with Cdc7 in both DNA-binding and transactivation domain plasmids. A molecular interaction between two different Cdc7 molecules was shown by using a HA-tagged Cdc7 protein that differs in size from the wild-type Cdc7 protein: an anti-HA antibody immunoprecipitates both proteins in appproximately equal stoichiometry. Analysis of the native molecular weight of Cdc7/Dbf4 protein kinase is consistent with oligomerization of the Cdc7 protein in that complexes of about 180 and 300 kDa were found. Oligomers of Cdc7 protein may exist for the purpose of allosteric regulation or to allow phosphorylation of multiple substrate protein molecules. Received: 4 January 1998 / Accepted: 16 June 1998  相似文献   

11.
In Saccharomyces cerevisiae, the heteromeric kinase complex Cdc7p-Dbf4p plays a pivotal role at replication origins in triggering the initiation of DNA replication during the S phase. We have assayed the kinase activity of endogenous levels of Cdc7p kinase by using a likely physiological target, Mcm2p, as a substrate. Using this assay, we have confirmed that Cdc7p kinase activity fluctuates during the cell cycle; it is low in the G1 phase, rises as cells enter the S phase, and remains high until cells complete mitosis. These changes in kinase activity cannot be accounted for by changes in the levels of the catalytic subunit Cdc7p, as these levels are constant during the cell cycle. However, the fluctuations in kinase activity do correlate with levels of the regulatory subunit Dbf4p. The regulation of Dbf4p levels can be attributed in part to increased degradation of the protein in G1 cells. This G1-phase instability is cdc16 dependent, suggesting a role of the anaphase-promoting complex in the turnover of Dbf4p. Overexpression of Dbf4p in the G1 phase can partially overcome this elevated turnover and lead to an increase in Cdc7p kinase activity. Thus, the regulation of Dbf4p levels through the control of Dbf4p degradation has an important role in the regulation of Cdc7p kinase activity during the cell cycle.  相似文献   

12.
Dbf4p is an essential regulatory subunit of the Cdc7p kinase required for the initiation of DNA replication. Cdc7p and Dbf4p orthologs have also been shown to function in the response to DNA damage. A previous Dbf4p multiple sequence alignment identified a conserved approximately 40-residue N-terminal region with similarity to the BRCA1 C-terminal (BRCT) motif called "motif N." BRCT motifs encode approximately 100-amino-acid domains involved in the DNA damage response. We have identified an expanded and conserved approximately 100-residue N-terminal region of Dbf4p that includes motif N but is capable of encoding a single BRCT-like domain. Dbf4p orthologs diverge from the BRCT motif at the C terminus but may encode a similar secondary structure in this region. We have therefore called this the BRCT and DBF4 similarity (BRDF) motif. The principal role of this Dbf4p motif was in the response to replication fork (RF) arrest; however, it was not required for cell cycle progression, activation of Cdc7p kinase activity, or interaction with the origin recognition complex (ORC) postulated to recruit Cdc7p-Dbf4p to origins. Rad53p likely directly phosphorylated Dbf4p in response to RF arrest and Dbf4p was required for Rad53p abundance. Rad53p and Dbf4p therefore cooperated to coordinate a robust cellular response to RF arrest.  相似文献   

13.
14.
In budding yeast, Dbf4p and Cdc7p control initiation of DNA synthesis. They form a protein kinase - Cdc7p being the catalytic subunit and Dbf4p a cyclin-like molecule that activates the kinase in late G1 phase. Dbf4p also targets Cdc7p to origins of replication, where probable substrates include certain Mcm proteins. Recent studies have identified Dbf4p- and Cdc7p-related proteins in fission yeast and metazoans. These homologues also phosphorylate Mcm proteins and could have a similar function to that of Dbf4p-Cdc7p in budding yeast. Thus, it seems likely that, like the cyclin-dependent kinases (CDKs), the Dbf4p-Cdc7p activity is conserved in all eukaryotes.  相似文献   

15.
16.
17.
huCdc7 encodes a catalytic subunit for Saccharomyces cerevisae Cdc7-related kinase complex of human. ASK, whose expression is cell cycle-regulated, binds and activates huCdc7 kinase in a cell cycle-dependent manner (Kumagai, H., Sato, N., Yamada, M., Mahony, D. , Seghezzi, W., Lees, E., Arai, K., and Masai, H. (1999) Mol. Cell. Biol. 19, 5083-5095). We have expressed huCdc7 complexed with ASK regulatory subunit using the insect cell expression system. To facilitate purification of the kinase complex, glutathione S-transferase (GST) was fused to huCdc7 and GST-huCdc7-ASK complex was purified. GST-huCdc7 protein is inert as a kinase on its own, and phosphorylation absolutely depends on the presence of the ASK subunit. It autophosphorylates both subunits in vitro and phosphorylates a number of replication proteins to different extents. Among them, MCM2 protein, either in a free form or in a MCM2-4-6-7 complex, serves as an excellent substrate for huCdc7-ASK kinase complex in vitro. MCM4 and MCM6 are also phosphorylated by huCdc7 albeit to less extent. MCM2 and -4 in the MCM2-4-6-7 complex are phosphorylated by Cdks as well, and prior phosphorylation of the MCM2-4-6-7 complex by Cdks facilitates phosphorylation of MCM2 by huCdc7, suggesting collaboration between Cdks and Cdc7 in phosphorylation of MCM for initiation of S phase. huCdc7 and ASK proteins can also be phosphorylated by Cdks in vitro. Among four possible Cdk phosphorylation sites of huCdc7, replacement of Thr-376, corresponding to the activating threonine of Cdk, with alanine (T376A mutant) dramatically reduces kinase activity, indicative of kinase activation by phosphorylation of this residue. In vitro, Cdk2-Cyclin E, Cdk2-Cyclin A, and Cdc2-Cyclin B, but not Cdk4-Cyclin D1, phosphorylates the Thr-376 residue of huCdc7, suggesting possible regulation of huCdc7 by Cdks.  相似文献   

18.
Eukaryotic cells coordinate chromosome duplication by assembly of protein complexes at origins of DNA replication and by activation of cyclin-dependent kinase and Cdc7p-Dbf4p kinase. We show in Saccharomyces cerevisiae that although Cdc7p levels are constant during the cell division cycle, Dbf4p and Cdc7p-Dbf4p kinase activity fluctuate. Dbf4p binds to chromatin near the G(1)/S-phase boundary well after binding of the minichromosome maintenance (Mcm) proteins, and it is stabilized at the non-permissive temperature in mutants of the anaphase-promoting complex, suggesting that Dbf4p is targeted for destruction by ubiquitin-mediated proteolysis. Arresting cells with hydroxyurea (HU) or with mutations in genes encoding DNA replication proteins results in a more stable, hyper-phosphorylated form of Dbf4p and an attenuated kinase activity. The Dbf4p phosphorylation in response to HU is RAD53 dependent. This suggests that an S-phase checkpoint function regulates Cdc7p-Dbf4p kinase activity. Cdc7p may also play a role in adapting from the checkpoint response since deletion of CDC7 results in HU hypersensitivity. Recombinant Cdc7p-Dbf4p kinase was purified and both subunits were autophosphorylated. Cdc7p-Dbf4p efficiently phosphorylates several proteins that are required for the initiation of DNA replication, including five of the six Mcm proteins and the p180 subunit of DNA polymerase alpha-primase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号