首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary The three-dimensional structure and arrangement of mitochondria in the red, white and intermediate striated muscle fibers of the rat were examined under a field-emission type scanning electron microscope after removal of cytoplasmic matrices by means of the Osmium-DMSO-Osmium procedure.Beneath the sarcolemma, spherical or ovoid subsarcolemmal mitochondria show accumulations. The mitochondria are numerous and large in size in the red fibers, intermediate in the intermediate fibers, and few and small in the white fibers. Paired, slender I-band-limited mitochondria were located on both sides of the Z-line and partly embraced the myofibrils at the I-band level; they occurred in all three types of fibers. In the intermyofibrillar spaces, numerous mitochondria formed mitochondrial columns. These columns were classified into two types: 1) thick mitochondrial columns, formed by multiple mitochondria each with an intermyofibrillar space corresponding to one sarcomere in length, and 2) thin mitochondrial columns, established by single mitochondria corresponding to one sarcomere in length. In the red fibers mitochondrial columns were abundant and the ratio of the thick and thin columns was almost the same, while in the intermediate fibers most of the columns belonged to the thin type. The white fibers displayed rare, very thin columns.  相似文献   

2.
Summary The fibers of drum and trunk muscles of the Tigerfish, Therapon jarbua, differ greatly in diameter. The myofibrils of the trunk muscles are irregularly oriented, while those of the drum muscles are rolled into spiral or concentric bands. Both muscle types possess the sarcomere structure typical of cross-striated musculature. However, the myofibrils of the drum muscles differ greatly in sarcomere length and width from those in the trunk musculature. The trunk muscles contain few mitochondria, whereas in the drum muscles mitochondria are abundant. The sarcoplasmic reticulum (SR) of the drum muscles takes the form of elongated tubes in both the A and the I region; that of the trunk musculature consists of small vesicles. Of the two muscle types, the drum muscle contains more SR. With respect to the form of the T system, the trunk musculature is of the Z type and the drum muscles of the A-I type. The drum muscle displays a considerably greater number of motor endplates; these lack typical junctional folds and have mitochondria with very few cristae. No fat could be demonstrated in either the drum or the trunk muscles. However, the concentration of glycogen is higher in the drum muscle than in the musculature of the trunk.This work was accomplished with support from the Deutsche Forschungsgemeinschaft and is gratefully dedicated to Prof. R. Danneel on the occasion of his 75th birthday.  相似文献   

3.
粘虫蛾飞行肌超微结构的研究   总被引:6,自引:4,他引:2  
罗礼智  李光博 《昆虫学报》1996,39(2):141-148
应用电子显微镜对粘虫雌蛾Mythimna separata(Walker)飞行(背纵)肌的研究结果表明,其肌原纤维由500-700根肌球蛋白丝(粗丝)组成,每根粗丝由6根肌动蛋白丝(细丝)环绕排列成六角形,每根细丝精确地位于两根粗丝间1/2处,从而使粗丝和细丝的比为1:3。肌节较短,长度约2.2-2.6μm。肌原纤维之间充满着线粒体和横管。每个肌节约有线粒体三个,横管二根。线粒体约占肌纤维体积的40%,而横管为7%。每根横管准确地位于肌节的1/4、3/4处,或Z线和中膈的中央,并与肌质网交接形成二位体(dyads)或三位体(triads)。肌质网相当不发达,约占肌纤维体积的2.5%。但其分布很有特色,即除了紧贴于肌原纤维周围的由单层液泡组成的肌质网以外,在中膈处还有一层横穿于肌原纤维的肌质网。和其它同步飞行肌的结构和功能分析比较的结果还表明,粘虫蛾飞行肌具有较善于飞行的结构。  相似文献   

4.
Diffraction rings corresponding to the first, second, and third order were obtained by laser light illumination from a suspension of rabbit glycerinated psoas myofibrils (diameter, 1-2 microns; average length of the straight region, 44 microns; average sarcomere length, 2.2-2.6 microns) of which the optical thickness was appropriately chosen. Dispersed myofibrils were nearly randomly oriented in two dimensions, so that the effects of muscle volume were minimized; these effects usually interfere significantly with a quantitative analysis of laser optical diffraction in the fiber system. The diameters of diffraction rings represented the average sarcomere length. By using this system, we confirmed the ability of the unit cell (sarcomere) structure model to explain the intensity change of diffraction lines accompanying the dissociation from both ends of thick filaments in a high salt solution. The length of an A-band estimated from the relative intensity of diffraction rings and that directly measured on phase-contrast micrographs coincided well with each other. Also, we found that myofibrils with a long sarcomere length shorten to a slack length accompanying the decrease in overlap between thick and thin filaments produced by the dissociation of thick filaments.  相似文献   

5.
The tubular fibers of the claw-closer muscle of the scorpion have a central core containing nuclei and mitochondria. The myofibrils have the shape of thin lamellae (1 µ) extending radially from the core to the surface membrane (20 µ). The thick myofilaments are organized in a hexagonal array with orbits of 10–13 thin myofilaments. The ratio of thick-to-thin filaments is 1:5. Transverse tubular system (TS) openings are located between lamellated myofibrils. In each sarcomere two TS's are found, one on each side of the H band. The TS is composed of a transverse tubule and tubular pockets (TP). The TP's form diadic contact with the terminal cisternae of the sarcoplasmic reticulum. The TS can be traced from the cell membrane down to the cell core. The surface area of the TS was calculated to be six times that of the outer surface membrane.  相似文献   

6.
The atrial myocardial cell in three teleostean species Gadiculus thori J. Smith, Melanogrammus aeglefinus (L.) and Onos cimbrius L. is described. The contractile material is located in the periphery of the cell, whereas the nucleus and mitochondria occupy the central part. The tubules of the sarcoplasmic reticulum are of larger diameter at the Z-band levels than elsewhere in the sarcomere. The transverse part of the intercalated disc is composed of alternating desmosomes and intermediate junctions. In the longitudinal part of the disc desmosomes occur, situated in close proximity to Z-bands. Short nexuses were found in the longitudinal part of the disc, usually near the transverse part. In G. thori numerous atrial specific granules were seen. A high number of mitochondrial granules and glycogen granules seems to occur in O. cimbrius. In the atrial myocardial cell of two or six day-old larvae of M. aeglefinus. the contractile material is organized into thin myofibrils, and numerous ribosomes are located in the sarcoplasm.
The results of the present work are compared to those previously described in the teleostean atrium and ventricle. The differences in the heart structure within the gadoid family are discussed from a functional and an evolutionary point of view.  相似文献   

7.
Summary A comparative study of the pigeon ventricular myocardial cell has been performed by transmission electron microscopy (TEM) and by scanning electron microscopy (SEM). Three-dimensional access to the cell interior was obtained by cryo-fracturing paraffin-embedded tissue immersed in liquid nitrogen. The TEM studies revealed parallelly arranged myofibrils separated by rows of mitochondria. The sarcoplasmic reticulum is represented by a well-developed network of tubules which, at the Z- and H-band level of the sarcomere, expands to form belt-like cisternae. The cisternae at the Z-band level lie in close proximity to both myofilaments and mitochondria. Transverse tubules are absent and thus only peripheral couplings are present.SEM observations of the fractured tissue revealed the spatial relationship between the different cell organelles, the most important of these being the parallel myofibrils and the mitochondria. The conspicuous ridges transversing the myofibril at the Z-band level consist mainly of expanded Z-bands, but overlying SR-tubules also contribute to these ridges. Traces of the SR can sometimes be seen covering the myofibrils. The close proximity between the SR and the mitochondria was also confirmed in the SEM.Preparation and examination of SEM prepared tissue in the TEM confirmed that no essential damage or reorganization of cell organelles had taken place during the SEM procedure. On the other hand some shrinkage of the tissue, which was probably caused by critical point drying, was noticed.  相似文献   

8.
Plectin (M(r) > 500,000) is a versatile and widely expressed cytolinker protein. In striated muscle it is predominantly found at the Z-disc level where it colocalizes with the intermediate filament protein desmin. Both proteins show altered labeling patterns in tissues of muscular dystrophy patients. Moreover, mutations in the plectin gene lead to the autosomal recessive human disorder epidermolysis bullosa simplex with muscular dystrophy, and defects in the desmin gene have been shown to cause familiar cardiac and skeletal myopathy. Since intermediate filaments (IFs) in striated muscle tissue have been found to be intimately associated with mitochondria, we investigated whether plectin is involved in this association. Using postembedding immunogold labeling of Lowicryl sections and immunogold labeling of ultrathin cryosections, we show that plectin is associated with desmin IFs linking myofibrils to mitochondria at the level of the Z-disc and along the entire length of the sarcomere. The localization of plectin label at the mitochondrial membrane itself was consistent with a putative linker function of plectin between desmin IFs and the mitochondrial surface. In mitochondrion-rich muscle fibers, both plectin and desmin were part of an ordered arrangement of mitochondrial side branches, which wound around myofibrils adjacent to the Z-discs and were anchored into a filamentous network transversing from one fibril to the other. The association of mitochondria with plectin and IFs was seen also in tissues without regular distribution patterns of mitochondria, such as heart muscle and neonatal skeletal muscle tissues. These data were supplemented with in vitro binding assays showing direct interaction of plectin with desmin via its carboxy-terminal IF-binding domain. As a cytolinker protein associated with mitochondria and desmin IFs, plectin could play an important role in the positioning and shape formation, in particular branching, of mitochondrial organelles in striated muscle tissues.  相似文献   

9.
Stretch-induced damage to skeletal muscles results in loss of isometric tension. Although there is no direct evidence, loss of tension has been implicitly assumed to be the consequence of permanent loss of myofilament overlap in some sarcomeres ('sarcomere overextension'). Using isolated myofibrils of rabbit psoas muscle (n=38; 6 control and 32 test specimens) at 12-15°C, we directly tested the idea that loss of tension following stretch is caused by sarcomere overextension. Experimental myofibrils were maximally activated at the edge of the descending limb (sarcomere length ~ 2.9 μm) of the sarcomere length-tension relationship and then stretched by 1 μm sarcomere(-1) at a constant speed of 0.1 μms(-1)sarcomere(-1) to result in an average strain of 33.6 ± 0.9% (mean ± 1 SE). Myofibrils were immediately returned to the original lengths and relaxed. Isometric tension measured in a subsequent re-activation 3-5 min later was reduced by 24.6 ± 1.5% from its original value. In 22 out of the 32 test specimens, all sarcomeres maintained myofilament overlap, while in 10 myofibrils one or two sarcomeres were stretched permanently beyond myofilament overlap (>4.0 μm), and thus exhibited overextended sarcomeres. Loss of tension following stretch was significantly smaller in myofibrils with overextended sarcomeres compared to myofibrils with no overextended sarcomeres (19.5 ± 2.3% and 27.1 ± 1.8%, respectively; p=0.017). Combined, these results suggest that the loss of tension associated with stretch-induced damage can occur in the absence of sarcomere overextension and that sarcomere overextension limits rather than causes stretch-induced tension loss.  相似文献   

10.
Titin is a structural protein in muscle that spans the half sarcomere from Z-band to M-line. Although there are selected studies on titin's mechanical properties from tests on isolated molecules or titin fragments, little is known about its behavior within the structural confines of a sarcomere. Here, we tested the hypothesis that titin properties might be reflected well in single myofibrils. Single myofibrils from rabbit psoas were prepared for measurement of passive stretch-shortening cycles at lengths where passive titin forces occur. Three repeat stretch-shortening cycles with magnitudes between 1.0 and 3.0μm/sarcomere were performed at a speed of 0.1μm/s·sarcomere and repeated after a ten minute rest at zero force. These tests were performed in a relaxation solution (passive) and an activation solution (active) where cross-bridge attachment was inhibited with 2,3 butanedionemonoxime. Myofibrils behaved viscoelastically producing an increased efficiency with repeat stretch-shortening cycles, but a decreased efficiency with increasing stretch magnitudes. Furthermore, we observed a first distinct inflection point in the force-elongation curve at an average sarcomere length of 3.5μm that was associated with an average force of 68±5nN/mm. This inflection point was thought to reflect the onset of Ig domain unfolding and was missing after a ten minute rest at zero force, suggesting a lack of spontaneous Ig domain refolding. These passive myofibrillar properties observed here are consistent with those observed in isolated titin molecules, suggesting that the mechanics of titin are well preserved in isolated myofibrils, and thus, can be studied readily in myofibrils, rather than in the extremely difficult and labile single titin preparations.  相似文献   

11.
The mechanical strength of sarcomere structures of skeletal muscle was studied by rupturing single myofibrils of rabbit psoas muscle by submicromanipulation techniques. Microbeads coated with alpha-actinin were attached to the surface of myofibrils immobilized to coverslip. By use of either optical tweezers or atomic force microscope, the attached beads were captured and detached from the myofibrils. During the detachment of the beads, the actin filaments bound specifically to the beads were peeled off from the bulk structures of myofibrils, thus rupturing the peripheral components of the myofibrils bound to the actin filaments. By analyzing the ruptures thus produced in various myofibril preparations, it was found that the sarcomere structure of myofibrils is maintained by numerous molecular components having the mechanical strength sufficient to sustain the contractile force produced by the actomyosin system. The present techniques could be applied to study the mechanical strength of cellular organelles containing actin filaments as their component.  相似文献   

12.
The aim of this study was to determine whether or not over-activation of calpains during running exercise or tetanic contractions was a major factor to induce sarcomere lesions in atrophic soleus muscle. Relationship between the degrees of desmin degradation and sarcomere lesions was also elucidated. We observed ultrastructural changes in soleus muscle fibers after 4-week unloading with or without running exercise. Calpain activity and desmin degradation were measured in atrophic soleus muscles before or after repeated tetani in vitro. Calpain-1 activity was progressively increased and desmin degradation was correspondingly elevated in 1-, 2-, and 4-week of unloaded soleus muscles. Calpain-1 activity and desmin degradation had an additional increase in unloaded soleus muscles after repeated tetani in vitro. PD150606, an inhibitor of calpains, reduced calpain activity and desmin degradation during tetanic contractions in unloaded soleus muscles. The 4-week unloading decreased the width of myofibrils and Z-disk in soleus fibers. After running exercise in unloaded group, Z-disks of adjacent myofibrils were not well in register but instead were longitudinally displaced. Calpain inhibition compromised exercise-induced misalignment of the Z-disks in atrophic soleus muscle. These results suggest that tetanic contractions induce an over-activation of calpains which lead to higher degrees of desmin degradation in unloaded soleus muscle. Desmin degradation may loose connections between adjacent myofibrils, whereas running exercise results in sarcomere injury in unloaded soleus muscle.  相似文献   

13.
四种淡水养殖鱼类血细胞的细微结构   总被引:10,自引:0,他引:10  
四种淡水鱼的血细胞形态基本相似。红血球形态与其他低等脊椎动物基本相似。淋巴球绝大部分是小淋巴球:单核球数量较少;四种鱼的嗜中性白血球形态结构差不多,胞核多为蚕豆形,很少见分叶核,分叶一般也只有二叶,这与哺乳类显然不同;嗜酸性白血球的形态结构与其他脊椎动物基本相似;在少数血涂片中看到了嗜碱性白血球。    相似文献   

14.
Summary The ultrastructure of the heart in Chimaera monstrosa L. is described. The endocardial and the epicardial cells are similar in the three cardiac regions. Myocardial cells show small variations.The myofibre, 4–6 m thick, contains one or a few myofibrils. Each myosin filament is surrounded by six actin filaments. The sarcomere banding pattern includes the Z-, A-, I-, M-, N-, and H-band. End-to-end attachments between myofibres are composed of alternating desmosomes and fasciae adhaerentes. Desmosomes and nexuses occur between longitudinally oriented cell surfaces. The sarcoplasmic reticulum is poorly developed but well defined. Peripheral coupling-like structures are common, T-tubules are absent. Membrane bound dense bodies occur in all regions. Areas with ribosomes and single myosin filaments are often seen.The epicardial cells have a regular hexagonal surface and are much thicker than the endocardial cells. Numerous short and a few longer cytoplasmic extensions face the pericardial cavity.The fiat endocardial cells contain a large nucleus and small amounts of cytoplasm.  相似文献   

15.
Activity of myofibrillar adenosinetriphosphatase was demonstrated histochemically at a fine structural level in isolated, unfixed or hydroxyadipaldehyde-fixed cardiac myofibrils in the rat, using a lead precipitation technique and either Ca++ or Mg++ as activating ion. Activity in relaxed myofibrils was found in the A band, but not the H, I, or Z bands. Deposits of final product frequently exhibited an axial periodicity of near 365 A, and bore a close relationship to filaments within the A band. Several patterns of distribution occurred in contracted myofibrils. In myofibrils which had shortened to the point of disappearance of the I band, final product was distributed throughout the sarcomere, except for the unreactive Z band. A second type of distribution occurred in strongly contracted fibers in which there was intensification of activity in the center of the sarcomere. These findings are discussed in the light of the recent morphological evidence and it is suggested that the distribution of final product is consistent with localization of enzyme activity to the cross-bridges between the thick and thin filaments.  相似文献   

16.
The aim of this thesis is to investigate the link between biochemical intracellular processes and mechanical contraction of the cardiac muscle. First, the regulation of intracellular energy fluxes between mitochondria and myofibrils is studied. It is shown, that the experimentally observed metabolic stability of the cardiac muscle is reproducible by a simple feedback regulation mechanism, i.e., ATP consumption in myofibrils and ATP production in mitochondria are balanced by the changes of the high energy phosphate concentrations. Second, an important property of energy transformation from biochemical form to mechanical work in the cardiac muscle, the linear relationship between the oxygen consumption and the stress-strain area, is replicated by a cross-bridge model. Third, by using the developed cross-bridge model, the correlation between ejection fraction of the left ventricle and heterogeneity of sarcomere strain, developed stress and ATP consumption in the left ventricular wall is established. Fourth, an experimentally observed linear relationship between oxygen consumption and the pressure-volume area can be predicted theoretically from a linear relationship between the oxygen consumption and the stress-strain area. Summing up, it is shown how the macrovariables of a cardiac muscle are interwoven with intracellular physiological processes into a whole.  相似文献   

17.
Cardiac cells are organized in vivo in a complex tridimensional structural organization that is crucial for heart function. While in vitro studies can reveal details about cardiac cell biology, usually cells are grown on simplified two-dimensional (2D) environments. To address these differences, we established a cardiac cell culture composed of both 2D and three-dimensional (3D)-organized cells. Our results shows significant differences between the two culture contexts in relation to the overall morphology of the cells, contraction ability, proliferation rate, presence of intercellular adhesion structures, organization of myofibrils, mitochondria morphology, endoplasmic reticulum contents, cytoskeletal filaments and extracellular matrix distribution, and expression of markers of cardiac differentiation. Cardiac cells grown in 2D-context displayed a flattened and well spread shape, were mostly isolated and their cytoplasm was filled with a large network of microfilaments and microtubules. In contrast, 3D-cells were smaller in size, were always in close contact with each other with several cellular junctions, and displayed a less conspicuous cytoskeletal network. 3D-cells had more mitochondria and myofibrils and these cells contract spontaneously more often than 2D-cells. On the other hand, endoplasmic reticulum membranes were present in higher amounts in 2D-cells when compared to 3D-cells. The expression of desmin, cadherin and alpha-actinin was higher in 3D-aggregates compared to 2D-spread cells. These findings indicate that the tridimensional environment in which the cardiac cells are grown influence several aspects of cardiac differentiation, including cell adhesion, cell shape, myofibril assembly, mitochondria contents and protein expression. We suggest that the use of this cardiac culture model, with 2D and 3D-context cells, could be useful for studies on the effects of different drugs, or growth factors, giving valuable information on the biological response of cells grown in different spatial organizations.  相似文献   

18.
The smallest contractile unit in striated muscles is the sarcomere. Although some of the classic features of contraction assume a uniform behavior of sarcomeres within myofibrils, the occurrence of sarcomere length nonuniformities has been well recognized for years, but it is yet not well understood. In the past years, there has been a great advance in experiments using isolated myofibrils and sarcomeres that has allowed scientists to directly evaluate sarcomere length nonuniformity. This review will focus on studies conducted with these preparations to develop the hypotheses that 1) force production in myofibrils is largely altered and regulated by intersarcomere dynamics and that 2) the mechanical work of one sarcomere in a myofibril is transmitted to other sarcomeres in series. We evaluated studies looking into myofibril activation, relaxation, and force changes produced during activation. We conclude that force production in myofibrils is largely regulated by intersarcomere dynamics, which arises from the cooperative work of the contractile and elastic elements within a myofibril.  相似文献   

19.
Confocal and electron microscopy images, and WB analysis of cellular fractions revealed that HP1γ is in the nucleus but also in the cytoplasm of C2C12 myoblasts, myotubes, skeletal and cardiac muscles, N2a, HeLa and HEK293T cells. Signal specificity was tested with different antibodies and by HP1γ knockdown. Leptomycin B treatment of myoblasts increased nuclear HP1γ, suggesting that its nuclear export is Crm-1-dependent. HP1γ exhibited a filamentous pattern of staining partially co-localizing with actin in the cytoplasm of myotubes and myofibrils. Immunoelectron microscopic analysis showed high-density immunogold particles that correspond to HP1γ localized to the Z-disk and A-band of the sarcomere of skeletal muscle. HP1γ partially co-localized with actin in C2C12 myotubes and murine myofibrils. Importantly, actin co-immunoprecipitated with HP1γ in the nuclear and cytosolic fractions of myoblasts. Actin co-immunoprecipitated with HP1γ in myoblasts incubated in the absence or presence of the actin depolymerizing agent cytochalasin D, suggesting that HP1γ may interact with G-and F-actin. In the cytoplasm, HP1γ was associated to the perinuclear actin cap that controls nuclear shape and position. In the nucleus, re-ChIP assays showed that HP1γ-actin associates to the promoter and transcribed regions of the house keeping gene GAPDH, suggesting that HP1γ may function as a scaffold protein for the recruitment of actin to control gene expression. When HP1γ was knocked-down, myoblasts were unable to differentiate or originated thin myotubes. In summary, HP1γ is present in the nucleus and the cytoplasm interacting with actin, a protein complex that may exert different functions depending on its subcellular localization.  相似文献   

20.
吴孔明  郭予元 《昆虫学报》1997,40(-1):79-83
利用电子显微镜观测表明,棉铃虫Helicoverpa rmigera (Hubner)飞翔肌的肌原纤维由400~800根肌球蛋白丝组成,每根肌球蛋白由6根肌动蛋白丝环绕排列成六角形,肌节长度2.0~3.5μm,线粒体占飞翔肌的体积达42.38%~48.57%,微气管组织较为发达。初羽化棉铃虫肌原纤维和线粒体的发育基本完成,横管系统的发育相对较慢,羽化3日后趋于成熟,至5日龄占飞翔肌的体积达3.31%~3.54%。表明棉铃虫具有适宜飞行的飞翔肌结构。采自渤海海面距海岸线80km的迁飞蛾子飞翔肌基本结构和实验种群无明显的区别,但迁飞过程中的能量代谢导致线粒体内脊疏松而出现大量空洞。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号