首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sap flow measurements have long been used to measure transpiration in individual trees and there exist some well established methods for upscaling individual tree volumetric transpiration to areal transpiration in plantation and forest plots. However, where edge effects are significant, such as in tree belts, the area the volumetric transpiration is to be projected upon is unknown. This paper provides a methodology for estimaing the area that a tree belt hydrologically occupies by using either measurements of tree root density or soil moisture distribution. An application of the proposed methodology shows that simply assuming that the area of the tree belt is the crown projected area could lead to an overestimation of the areal transpiration of 100%. An erratum to this article can be found at  相似文献   

2.
Branch water exchange and total tree water uptake were measured in a mixed Norway spruce and Scots pine stand in central Sweden during the 1995 and 1996 growing seasons. Branch transpiration was scaled to canopy level on the basis of a branch conductance model, using vertical needle-area distributions obtained by destructive sampling. Comparison with total tree water uptake scaled to canopy level showed agreement within 10%, for periods when the canopy was not affected by climatically induced stress. Comparison of scaled fluxes on individual trees showed that measurements of transpiration at branch level provide information on the direct response of transpiration to variations in weather, and furthermore that the time-lag between transpiration and tree water uptake was as much as 3 h. The vertical needle-area distribution of Scots pine was similar to that found by other authors. Needle-area distribution on Norway spruce, which has not been described before, showed that it has its largest needle area at the top of the crown. Specific needle area varied considerably both within trees and between trees. For spruce, mean specific needle area (±SD) varied from 2.4±0.5 mm2 mg–1 at the top of the crown to 7.1±1.9 mm2 mg–1 at the base. Corresponding figures for Scots pine were 3.4±2.0 and 9.1±2.1. Received: 5 March 1999 / Accepted: 17 March 2000  相似文献   

3.
Abstract The heat-pulse method was used to estimate transpiration rates continuously for periods up to 2 years in mature trees of Eucalyptus wandoo and Eucalyptus salmonophloia at two topographic locations in a remnant native woodland in the Western Australian wheatbelt. Annual transpiration per tree ranged from about 11400 to 18000 L per tree. Highest transpiration rates occurred in late spring or early summer, depending on rainfall distribution. The trees were able to rapidly utilize water following heavy rain outside the agricultural growing season. Extrapolating transpiration rates from single trees to an area of woodland showed that annual transpiration at the ridge site was 150 mm and 168 mm at a site alongside a drainage line. Scaling up transpiration from individual trees requires caution and should allow for variability in trees and soils. The role of trees in curtailing salinization is discussed.  相似文献   

4.
5.
基于热扩散方法测定树木蒸腾的潜在误差分析   总被引:3,自引:1,他引:2  
蒸腾作为植被蒸散的主要分量,是植物水分生理生态学研究的核心内容,其测定方法的研究备受关注.热扩散方法是测量树木蒸腾的最优方法之一.大量研究表明,应用热扩散方法测定的单株树木蒸腾量以及扩展到林分尺度蒸腾耗水量均相对准确,但在测定过程以及测定值与蒸腾真实值之间存在着潜在误差.本文综述了热扩散方法在树干液流通量密度测定以及从温差测定点到单株、从单株到林分尺度扩展过程中存在的潜在误差,展望了我国开展热扩散方法潜在误差分析的主要研究方向,并提出了解决其潜在测量误差的方法.  相似文献   

6.
Photosynthesis and transpiration of an isolated tree: model and validation   总被引:5,自引:3,他引:2  
Abstract. A model for the distribution of radiation incident on leaves in an isolated apple tree is presented. The simulated area of shadow cast by a tree compared well with measured values. The radiation model is combined with leaf models of photosynthesis and stomatal behaviour to simulate diurnal variations in the exchanges of carbon dioxide and water by the tree. Satisfactory correspondence was obtained when observed rates of transpiration and photosynthesis were compared with simulations. Further simulations indicated the diurnal patterns of transpiration and photosynthesis to be expected for trees with various shapes and leaf areas.  相似文献   

7.
高温天气植被蒸腾与遮荫降温效应的变化特征   总被引:2,自引:0,他引:2  
开展城市中不同树种植被遮荫与蒸腾降温效应的量化研究是科学优化植被温度调控服务的重要基础。以南京市栖霞区某小型绿地单元为研究区,对高温晴朗天气下不同树种典型植株树干液流进行了观测,采用"单位叶面积上的平均液流速率×叶面积指数"的扩展方法实现了由单株到林分尺度上冠层蒸腾量与蒸腾降温效应的估算,并根据林上、林下太阳辐射值计算了不同树种与整个绿地单元的遮荫降温效应,进而阐明了蒸腾与遮荫降温对总降温效应贡献率的变化特征。研究结果表明:1)3个树种树干液流均呈现昼高夜低的变化趋势,树干液流通常在6:00左右启动,正午前后达到峰值,且存在明显的"午休"现象,而在同一树种内树干液流会随着胸径的增大而显著增大;2)林分尺度上的冠层蒸腾量与蒸腾降温效应均为杨树雪松香樟,杨树峰或谷出现的时间(11:00—19:00)均明显晚于雪松(10:00—15:00)和香樟(9:00—16:00);3)3个树种遮荫降温效应总体上与太阳辐射的日变化规律基本一致,但树种间日平均降温效应的差异较小;4)3个树种与整个小型绿地单元的总降温效应在夜间均非常微弱,且全部为蒸腾降温,而在白天遮荫对总降温的贡献率(60%—75%)则明显高于蒸腾降温(25%—40%)。  相似文献   

8.
Rates of water uptake by individual trees in a native Australian forest were measured on the Liverpool Plains, New South Wales, Australia, using sapflow sensors. These rates were up-scaled to stand transpiration rate (expressed per unit ground area) using sapwood area as the scalar, and these estimates were compared with modelled stand transpiration. A modified Jarvis-Stewart modelling approach (Jarvis 1976), previously used to calculate canopy conductance, was used to calculate stand transpiration rate. Three environmental variables, namely solar radiation, vapour pressure deficit and soil moisture content, plus leaf area index, were used to calculate stand transpiration, using measured rates of tree water use to parameterise the model. Functional forms for the model were derived by use of a weighted non-linear least squares fitting procedure. The model was able to give comparable estimates of stand transpiration to those derived from a second set of sapflow measurements. It is suggested that short-term, intensive field campaigns where sapflow, weather and soil water content variables are measured could be used to estimate annual patterns of stand transpiration using daily variation in these three environmental variables. Such a methodology will find application in the forestry, mining and water resource management industries where long-term intensive data sets are frequently unavailable.  相似文献   

9.
Here we develop and test a method to scale sap velocity measurements from individual trees to canopy transpiration (E(c)) in a low-productivity, old-growth rainforest dominated by the conifer Dacrydium cupressinum. Further, E(c) as a component of the ecosystem water balance is quantified in relation to forest floor evaporation rates and measurements of ecosystem evaporation using eddy covariance (E(eco)) in conditions when the canopy was dry and partly wet. Thermal dissipation probes were used to measure sap velocity of individual trees, and scaled to transpiration at the canopy level by dividing trees into classes based on sapwood density and canopy position (sheltered or exposed). When compared with ecosystem eddy covariance measurements, E(c) accounted for 51% of E(eco) on dry days, and 22% of E(eco) on wet days. Low transpiration rates, and significant contributions to E(eco) from wet canopy evaporation and understorey transpiration (35%) and forest floor evaporation (25%), were attributable to the unique characteristics of the forest: in particular, high rainfall, low leaf area index, low stomatal conductance and low productivity associated with severe nutrient limitation.  相似文献   

10.
Understanding the water relations of Eucalyptus trees plays an important role in finding solutions to dryland salinity in southern Australia. A model for studying structure–function relationships in isolated tree crowns (radiation absorption, transpiration and photosynthesis, RATP) was parameterized to permit the seasonal transpiration course of a Eucalyptus salmonophloia tree to be quantified. Model responses to different parameterizations were tested in a sensitivity analysis. Predictive quality was mostly affected by the accuracy of information about leaf area density and stomatal responses to air vapor pressure deficit, and to a lesser extend by foliage dispersion. Assuming simple, non‐synergistic influences of changes in photosynthetic active radiation and air vapor pressure deficit on stomatal transpiration control, the model was able to simulate the daily water uptake of E. salmonophloia trees with reasonable predictive quality during an entire season. In order to more precisely simulate short‐term (i.e. diurnal) water use dynamics, the model must be extended to account for hydraulic and chemical controls of stomatal regulation of crown energy balance.  相似文献   

11.
《Acta Oecologica》2007,31(3):386-398
Plant transpiration has a key role on both plant performance and ecosystem functioning in arid zones, but realistic estimates at appropriate spatial-temporal scales are scarce. Leaf and tiller morphology and crown architecture were studied together with leaf physiology and whole plant water balance in four individual plants of Stipa tenacissima of different sizes to determine the relative influence of processes taking place at different spatial and temporal scales on whole plant transpiration. Transpiration was estimated in potted plants by leaf-level gas exchange techniques (infrared gas analyzer and porometer), by sap flow measurements, and by integrating leaf physiology and crown architecture with the 3-D computer model Yplant. Daily transpiration of each individual plant was monitored using a gravimetric method, which rendered the reference values. Leaves on each individual plant significantly varied in their physiological status. Young and green parts of the leaves showed five times higher chlorophyll concentration and greater photosynthetic capacity than the senescent parts of the foliage. Instantaneous leaf-level transpiration measurements should not be used to estimate plant transpiration, owing to the fact that extrapolations overestimated individual transpiration by more than 100%. Considering leaf age effects and scaling the estimates according to the relative amount of each foliage category reduced this difference to 46% though it was still significantly higher than gravimetric measurements. Sap flow calculations also overestimated tussock transpiration. However, 3-D reconstruction of plants with Yplant and transpiration estimates, considering both the physiological status and the daily pattern of radiation experienced by each individual leaf section within the crown, matched the gravimetric measurements (differences were only 4.4%). The complex interplay of leaf physiology and crown structure must be taken into account in scaling up plant transpiration from instantaneous, leaf-level measurements, and our study indicates that transpiration of complex crowns is easily overestimated.  相似文献   

12.
A new approach to study dynamic interactions between transpiration and xylem pressure in intact plants is presented. Pressure probe measurements were preformed in living (immature) late metaxylem of maize roots rather than in adjacent mature xylem. This eliminated technical limitations related to the measurement of negative pressures. Water relations of single cells showed that turgor and volumetric elastic modulus were significantly larger in living metaxylem than in cortical cells; hydraulic conductivity was similar in both types of root cells. Increasing transpiration induced an immediate decrease of xylem pressure, and vice versa. Turgor in the living metaxylem could be continuously recorded for more than 1 h. The relationship between xylem pressure and transpiration yielded a root hydraulic resistance of 1.3 x 109 MPa s m-3. Control experiments indicated that the response of living xylem in the positive pressure range essentially paralleled that of mature root xylem in the negative range. In mature xylem, pressures as low as -0.55 MPa were recorded for short periods (several minutes). Several tests verified that the pressure probe was in contact with mature xylem during the measurements of tensions. The results demonstrate convincingly that transpiration generates an effective driving force for water uptake in roots, a central feature of the cohesion theory.Key words: Hydraulic conductivity, negative pressure, root development, turgor, water transport, Zea mays.   相似文献   

13.
在半干旱区连续2年监测华北落叶松(Larix principis-rupprechtii)的树干液流、气象因子和土壤体积含水量,分析不同时间尺度下人工林冠层蒸腾与环境因子的关系。结果表明:不同时间尺度下,华北落叶松人工林冠层蒸腾的季节变化均呈单峰曲线,即先增大后减小的趋势;2016年、2017年日蒸腾量分别为1.58 mm/d和1.71 mm/d,生长季蒸腾总量分别为241.30 mm和260.97 mm。在日尺度下,气温、太阳辐射强度和饱和水汽压差是影响华北落叶松人工林冠层蒸腾主要环境因子;月尺度下,气温、风速、降水和土壤水分是冠层蒸腾的主要影响因子;冠层蒸腾与降水、大气相对湿度的相关关系由日尺度下的负相关到月尺度的正相关,相关性增强。总体来看,随时间尺度由小到大,气温、风速、大气相对湿度、降水、土壤水分对冠层蒸腾的影响作用增大,而太阳辐射强度、饱和水汽压差的作用减弱;在未来增温增雨趋势下,研究区生长季将延长,华北落叶松人工林冠层蒸腾量可能会加大。  相似文献   

14.
Seasonal dependence of biomass production on transpiration has been previously reported for a number of crops under salinity and drought. Linear yield (Y) to transpiration (T) relationships have been utilized in plant-growth and water-uptake models to estimate yield based on predicted transpiration values. The relationship is often employed for time steps that are very small compared with the whole season measurements, even though no empirical validation exists for such application. This work tests the hypothesis that linear Y-T relationships are valid throughout the life span of crops under varied natural conditions and levels of environmental stress. Effects of salinity and water supply on growth, water use and yields of tomatoes (Lycopersicon esculentum Mill.) were studied for two distinct conditions of potential transpiration. Linear relationships between relative Y and relative ET were found to be consistent throughout the life span of the crops for both growing seasons. Water-use efficiency increased together with plant growth as a result of changes in the plant's surface area to volume ratio. This empirical validation of linear Y-T relationships for short time periods is beneficial in confirming their usefulness in growth and water uptake models.  相似文献   

15.
Plant transpiration has a key role on both plant performance and ecosystem functioning in arid zones, but realistic estimates at appropriate spatial-temporal scales are scarce. Leaf and tiller morphology and crown architecture were studied together with leaf physiology and whole plant water balance in four individual plants of Stipa tenacissima of different sizes to determine the relative influence of processes taking place at different spatial and temporal scales on whole plant transpiration. Transpiration was estimated in potted plants by leaf-level gas exchange techniques (infrared gas analyzer and porometer), by sap flow measurements, and by integrating leaf physiology and crown architecture with the 3-D computer model Yplant. Daily transpiration of each individual plant was monitored using a gravimetric method, which rendered the reference values. Leaves on each individual plant significantly varied in their physiological status. Young and green parts of the leaves showed five times higher chlorophyll concentration and greater photosynthetic capacity than the senescent parts of the foliage. Instantaneous leaf-level transpiration measurements should not be used to estimate plant transpiration, owing to the fact that extrapolations overestimated individual transpiration by more than 100%. Considering leaf age effects and scaling the estimates according to the relative amount of each foliage category reduced this difference to 46% though it was still significantly higher than gravimetric measurements. Sap flow calculations also overestimated tussock transpiration. However, 3-D reconstruction of plants with Yplant and transpiration estimates, considering both the physiological status and the daily pattern of radiation experienced by each individual leaf section within the crown, matched the gravimetric measurements (differences were only 4.4%). The complex interplay of leaf physiology and crown structure must be taken into account in scaling up plant transpiration from instantaneous, leaf-level measurements, and our study indicates that transpiration of complex crowns is easily overestimated.  相似文献   

16.
Species diversity in mixed forest stands is one of the factors that complicate up-scaling of transpiration from individual trees to stand level, since tree species are architecturally and functionally different. In this study, thermal dissipation probes were used to measure sap flow in five different tree species in a mixed-deciduous mountain forest in South Korea. Easily measurable tree characteristics that could serve to define individual tree water use among the different species were employed to scale up transpiration from single trees to stand level. Tree water use (TWU) was derived from sap flux density (SFD) and sapwood area (SA). Canopy transpiration E was scaled from TWU while canopy conductance (g c) was computed from E and VPD. SFD, TWU and g c were correlated with tree diameter at breast height (DBH) for all the five measured species (SFD: R 2 = 0.21, P = 0.036; TWU: R 2 = 0.83, P < 0.001; g c: R 2 = 0.63, P < 0.001). Maximum stand transpiration (E) during June, before the onset of the Asian monsoon rains, was estimated at 0.97 ± 0.12 mm per day. There was a good (R 2 = 0.94, P < 0.0001) agreement between measured and estimated E using the relationship between TWU and DBH. Our study shows that using functional models that employ converging traits among species could help in estimating water use in mixed forest stands. Compared to SA, DBH is a better scalar for water use of mixed forest stands since it is non-destructive and easily obtainable.  相似文献   

17.
Brief information about water balance of the Carpathian temperate forest ecosystem are presented in the paper. Experimental research was done in a mature mixed fir-spruce-beech stand in the research plot “Pol’ana-Hukavský grúň” (850 m a.s.l.) in the south-eastern part of Pol’ana Mts. in the Biosphere Reserve UNESCO in Central Slovakia. Individual parameters of water budget have been continuously monitored. The water consumption of the model beech trees, as well as approximate model beech stand transpiration was estimated on the basis of sap flow measurements and up-scaling through dendrometrical approach. Sap flow of model beech trees was estimated by direct, non-destructive and continuous measurements by tree-trunk heat balance method with internal heating and sensing of temperature. These values were compared with potential evapotranspiration according to Türc. Precipitation parameters (rain and snow precipitation, through-fall precipitation, stem-flow, fog/snow precipitation and infiltration) have been measured simultaneously. Results of mass water balance and the portion of the tree transpiration within the individual water flows are presented. Evapotranspiration of beech-fir forest ecosystem in the middle mountain region (850 m a.s.l.) includes: transpiration (35% of precipitation total), interception (21%), evaporation (8%). There are differences between tree species in mass of transpirated water. Transpiration of spruce and fir reaches two-thirds of beech transpiration. Fog precipitation contribution to the water balance of beech-fir stand is 5%. Concurrently fog precipitation lowers the interception losses of vertical precipitation.  相似文献   

18.
In the Mediterranean basin, precipitation is expected to decline as a consequence of climate change. The response of a Quercus ilex forest in southern France to such a decline in water availability was studied using a 4-year throughfall exclusion experiment. Seasonal courses of sap flow and leaf water potential were obtained from 2004 to 2007 and used to characterize tree water relations in a control and a dry treatment. The experiment reduced the average precipitation input to the soil by 29%, and resulted in a 23% reduction in annual transpiration. Soil water potential was significantly lower in the dry treatment only during summer drought, but transpiration was reduced all year round even during well-watered periods. Despite a tight stomatal control over transpiration, whole-tree hydraulic conductance was found to be lower in the trees growing in the driest conditions. This reduction in water transport capacity was observed jointly with a reduction in leaf transpiring area. Canopy leaf area decreased by 18% in the dry treatment as a consequence of the throughfall exclusion, which was found to validate the ecohydrological equilibrium theory.  相似文献   

19.
Quantifying water use of native vegetation is an important contribution to understanding landscape ecohydrology. Few studies provide long-term (more than one growing season) estimates of water use and even fewer quantify interseasonal and interannual variation in transpiration. Globally, changes in land use are significantly altering landscape ecohydrology, resulting in problems such as dryland salinity and excessive groundwater recharge. Estimating stand water use is complex in multispecies forests, due to the differences in relationships among sapwood area, basal area and tree size for co-occurring species. In this article, we examine seasonal and interannual variation in transpiration rate of the tree canopy of two co-occurring species (a conifer Callitris glaucophylla J. Thompson & L.A.S. Johnson and a broad-leaved Eucalyptus crebra F. Muell.) in an open woodland in eastern Australia. Evapotranspiration of understorey species was measured using an open-top chamber, and tree water use was measured using heat-pulse sap flow sensors. Annual stand transpiration was 309 mm in 2003, a year of below average rainfall, and 629 mm in 2004, a year with higher-than-average rainfall. Despite an almost doubling (522 vs. 1062 mm) of annual rainfall between 2003 and 2004, annual tree water use remained a constant fraction (59%) of rainfall, indicative of compensatory mechanisms linking annual rainfall, leaf area index and tree water use. Deep drainage was estimated to be 4% of rainfall (20.8 mm) in 2003 and 2% (21.2 mm) in 2004, indicating that this native woodland was able to minimize deep drainage despite large interannual variability in rainfall.  相似文献   

20.
Canopy transpiration in a chronosequence of Central Siberian pine forests   总被引:4,自引:0,他引:4  
Tree transpiration was measured in 28, 67, 204 and 383‐y‐old uniform stands and in a multicohort stand (140–430 y) of Pinus sylvestris ssp. sibirica Lebed. in Central Siberia during August 1995. In addition transpiration of three codominant trees was monitored for two years in a 130‐y‐old stand. All stands established after fire. Leaf area index (LAI) ranged between 0.6 (28‐y‐old stand) and 1.6 for stands older than 67‐y. Stand xylem area at 1.3 m height increased from 4 cm2 m?2 (28‐y) to 11.5 cm2 m?2 (67‐y) and decreased again to 7 cm2 m?2 in old stands. Above‐ground living biomass increased from 1.5 kg dry weight m?2 (28‐y) to 14 kg dry weight m?2 (383‐y). Day‐to‐day variation of tree transpiration in summer was dependent on net radiation, vapour pressure deficit, and soil water stress. Tree‐to‐tree variation of xylem flux was small and increased with heterogeneity in canopy structure. Maximum rates of xylem flux density followed the course of net radiation from mid April when a constant level of maximum rates was reached until mid September when low temperatures and light strongly reduced flux density. Maximum sap flux density (60 g m?2 s?1) and canopy transpiration (1.5 mm d?1) were reached in the 67‐y stand. Average canopy transpiration of all age classes was 0.72 ± 0.3 mm d?1. Canopy transpiration (E) was not correlated with LAI but related to stand sapwood area SA (E = ? 0.02 + 1.15SA R2) which was determined by stand density and tree sapwood area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号