首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Wang Y  Lin M  Lin GM  Xiang P 《应用生态学报》2011,22(2):503-512
基于2009年6月11—16日闽粤近岸(21.6°—24.3°N,115.7°—118.7°E)30个站位133个样品的调查资料,对闽粤近岸上升流区浮游植物群落的物种组成、丰度变化进行了三维结构(水平、垂直、断面)研究,并探讨其与下层水涌升、营养盐补充的关系.共记录浮游植物4门85属159种,以及未定种9种.其中,硅藻为优势类群,甲藻次之,以束毛藻为主要组分的固氮蓝藻也占有较大比例,而金藻仅在近岸10 m上层检出.细长翼根管藻、菱形海线藻、尖刺伪菱形藻、中肋骨条藻、佛氏海线藻、具槽帕拉藻、斯氏几内亚藻、铁氏束毛藻、纺锤角藻和旋沟藻为群落的优势种.调查区内浮游植物以广温种为主,其次是暖水种,而热带高盐和外海广温种较少.浮游植物细胞丰度平均为每升67.59×102个.浮游植物垂直分布的总体特点是丰度在表层最大,随着水深增加逐渐减小.浮游植物细胞丰度的平面和断面分布不均匀,密集区出现在南澳岛邻近海域,与上升流中心重合.上升流强度较弱或在涌升早期阶段,浮游植物细胞丰度增长不明显,密集区位于或邻近上升流中心.南澳岛至漳浦一线海域的4条断面(B、C、D、E)浮游植物细胞丰度值较高,存在经由台湾浅滩的陆架海流向近岸的上涌现...  相似文献   

3.
Phytoplankton productivity was investigated at two nearshoresites in the southern Benguela region during the upwelling season.Changes in biomass and production are discussed in relationto the physical and chemical Status of the water column. Itis suggested that, although light and nutrients affect the productionand biomass of phytoplankton, low phytoplankton biomass in upwellingwater, coupled with the frequency of upwelling, plays a moreimportant role in the overall productivity of the nearshorecoastal zone of upwelling regions where the source water ispoor in chlorophyll a.  相似文献   

4.
We measured grazing by herbivorous zooplankton (<200 μm fraction) in coastal and slope regions of the South Brazil Bight. Using the dilution technique, we performed nine experiments during the austral summer, when nutrient-rich South Atlantic Central Water is present on the shelf, and five during winter. These experiments provide the first estimates of microzooplankton grazing in the western South Atlantic Ocean. Model II regression showed a strong relationship between phytoplankton intrinsic growth rates and grazing, with a slope of 0.64 (±0.28; 95% confidence interval) indicating that microzooplankton grazing could account for the majority of phytoplankton mortality. Both phytoplankton growth and microzooplankton grazing were higher during the summer upwelling season, compared to winter. For the two experiments that were conducted in oligotrophic slope water, grazing accounted for >80% of phytoplankton production. A comparison of incubations with and without added inorganic nutrients showed no consistent stimulation of phytoplankton growth (slope of enriched versus unenriched treatments not significantly different from 1). Estimates from microscopic counts of heterotrophic organisms >10 μm indicated that copepod nauplii comprised the largest share of the microzooplankton biomass (mean 62.4 ± 5.8% SE). Grazing estimates were not correlated with microzooplankton biomass, whether or not nauplii were included, suggesting that most of the grazing was done by nano-sized zooplankton. Electronic Supplementary Material Electronic supplementary material is available in the online version of this article at and is accessible for authorized users. Handling editor: S. Wellekens  相似文献   

5.
The composition and temporal changes in phytoplankton populationswere evaluated in local upwelling off the Izu Peninsula. Japan.in May. 1982. Phytoplankton in the upwelled water was dominatedby diatoms and that in the surrounding water by various flagellatesand monads. Phytoplankton started logarithmic growth almostimmediately after subsurface nutrient-rich water was upwellinginto the euphotic zone and nutrients were depleted within afew days. Growth enhancement was most striking among diatoms.As a result >50% of the total phytoplankton biomass of cells>2 µm was from a centric diatom. Leptocylindrus danicus.The results confirmed many past observations of the dominanceof diatoms in upwelled water. Such dominance is explained bythe rapid growth of diatoms when nutrient concentrations areenhanced.  相似文献   

6.
Zooplankton was sampled during the summer of 1995 from a grid of 34 shelf stations located off the Ria de Aveiro (northwestern Portugal), which were arranged into cross-shore transects extending either to the shelf break or to the 50 m isobath. At each station, a bongo net was hauled obliquely from close to the bottom or a maximum depth of 50 m to the surface. STD casts were made also at each station and wind data were obtained from a land station. Analysis of salinity and temperature data detected the presence of strong thermohaline stratification and a lens of reduced salinity water at the surface. A well-defined front, located at a depth of 10 to 35 m, separated cold water close to shore from warmer offshore water. Isopycnals between the front and the shore were bent towards the surface. The structure of the thermohaline features was consistent with the upwelling-favourable winds measured during the sampling period. A classification and a multivariate analysis of variance of the more abundant species showed the presence of two distinct assemblages that were separated by the front, indicating that these formations are important features structuring the zooplanktonic community of upwelling areas. The data further indicate that the zooplankton was composed of Palaeartic Atlantic and Mediterranean neritic species, and that oceanic species were absent from the samples. The absence of oceanic species is interpreted as resulting from the offshore displacement of the slope poleward flow and of the Portugal Current that takes place during the summer, as a response to upwelling-favourable winds.  相似文献   

7.
Nilsun Demir 《Limnology》2007,8(3):337-342
The phytoplankton composition of coastal, hyposaline (≅12 g l−1) Lake Bafa in western Turkey, was investigated after the alteration of salinity levels in past decades. Lake Bafa, formerly a bay of the Aegean Sea, was separated from the sea as a result of alluvium deposits of the Meander River. After the construction of a sett for flood control in 1985, freshwater inflow was reduced and salinity increased, which caused some ecological changes. Phytoplankton samples were taken in August and November 2000, and February and May 2001, from the surface and at 5-m intervals in the water column at three stations. The phytoplankton community contained a mixture of freshwater and marine origin species. A total of 45 species from Bacillariophyceae, Chlorophyceae, Cyanophyceae, Chrysophyceae, and Dinophyceae were identified. Marineoriginated species such as Chaetoceros spp. (November and May), Thalassionema nitzschioides and Prorocentrum micans (August and November), and P. minimum (May) were dominant on the basis of numerical abundance. The occurrence of salinity-tolerant species such as T. nitzschioides, P. micans, and P. minimum has not been recorded in previous studies.  相似文献   

8.
A simple nutrient–phytoplankton–zooplankton (NPZ)pelagic ecosystem model coupled to a two-dimensional primitiveequation circulation model with explicit mixed-layer physicsis configured in a coastal setting to study the biological responseto idealized wind-driven upwelling conditions. Conventionalecosystem model parameterization, which assumes macrozooplanktonas the target grazers, leads to upwelling-induced phytoplanktonblooms that exhaust available nutrient supply and whose zonalscale increases with wind duration. Offshore zooplankton maximaresult from upwelled water with greater total nitrogen concentrationsthan initial ambient surface water. Substantial vertical mixingin the surface boundary layer sets the vertical scale of theproductivity. Phytoplankton sinking contributes to a nearshoreaccumulation of total nitrogen, and enhances the magnitude andduration of the phytoplankton bloom. The system responds differentlywhen the zooplankton are parameterized to represent microzooplankton.The phytoplankton and zooplankton maxima have more limited zonalextent, are more independent of the duration of wind forcing,and near-surface nutrient levels remain high over most of thedomain. When winds are relaxed, the diminished offshore transportreveals the underlying biological oscillations in the microzooplankton-parameterizedecosystem, and reduced vertical mixing decouples surface fromsubsurface dynamics. In contrast, the macrozooplankton systemrelaxes to a steady state supporting limited phytoplankton andlarge zooplankton levels in the upwelling region.  相似文献   

9.
Eastern boundary coastal upwelling ecosystems (EBUEs) are highly sensitive to climate variability, particularly to coastal wind change. Here, we test the response of the flesh yield of blue mussels cultured in the northern boundary of the Iberian–Canary current EBUE to climate-related variables. Significant relationships were found between the annual mean, seasonal build-up and phenology of the mussel flesh yield with meteorological variables such as continental runoff, intensity and direction of coastal winds, and solar radiation. Our analysis shows that better flesh yields occur during years characterised by dry winters, accompanied by early springs and followed by summers dominated by strong northerly winds that produce intense upwelling. Compared with other EBUEs, upwelling has weakened in the study area over the last fifty years, implying an overall decrease in mussel flesh yield. However, future climate scenarios suggest that coastal upwelling will intensify over the 21th century, particularly during the summer months, which would lead to a recovery of mussel flesh yield.  相似文献   

10.
The abundance and several estimators of mesozooplankton biomass(dry weight, ash-free dry weight, displacement volume, carbonand nitrogen) were measured in a coastal upwelling area offLa Coru*****na (NW Spain) at monthly intervals between 1990and 1995. Holoplanktonic copepods dominated in most of the samples,but meroplanktonwere also important near the coast, especiallyduring late spring and through summer. Gelatinous organisms(medusae, siphonophores and larvaceans) reached significantabundances (-10%) in shelf waters by late summer, but also nearthe coast in spring. Log-linear equations were computed betweendry weight, displacement volumeand the other biomass estimators,to allow for interconversion among different measurements. Toprevent the influence of meroplankton and gelatinous zooplanktonin the estimations of biomass, the equations were adjusted usingonly samples in which the abundance of each of these groupswas <10% of total individuals. Our equations produced carbonand ash-free dry weight estimates that are comparable to thoseobtained with the ratiosgiven in other studies in the region.However, the esti mations of mesozooplankton carbon from displacementvolume using the adjusted equation with our data are lower thanthose reported previously for the area, which werecomputed usingequations adjusted with data from a different ecosystem. Theuse of interconversion factors taken from the literature isdiscussed, along with the implications of the estimations ofmesozooplankton biomass in the computations of the flux of carbonthrough the ecosystem.  相似文献   

11.
12.
We investigated the temporal stability of phytoplankton at a subtropical coastal site for 9 months by conducting chlorophyll and flow cytometric measurements at relatively high frequency (roughly at 2–5 day interval). Phytoplankton cells were grouped based on their sizes obtained from flow cytometric signals. We also conducted dilution experiments to estimate the growth and grazing mortality rates of different phytoplankton groups to assess whether the temporal stability of phytoplankton abundances was related with phytoplankton growth/grazing rates. Based on size-fractionated chlorophyll measurements, there was some indication that smaller phytoplankton cells were more stable than larger ones. However, by cytometric counting, there was no evidence for greater stability in small cells. Synechococcus, which had the lowest stability and dominated the <1 μm size class, showed a strong seasonal cycle that was highly dependent on temperature whereas eukaryotes did not have evident seasonal cycles. In general, biomass of a phytoplankton group consisting of several size classes was more stable than that of its sub component, consistent with the hypothesis that higher diversity leads to higher stability, probably related with the effect of statistical averaging (portfolio effect). Stability of heterotrophic bacteria was much higher than that of phytoplankton, leading to the speculation that bacteria were more diverse than phytoplankton. Phytoplankton stability was not related with their growth or grazing mortality rates. Our study suggests that species diversity should be taken into account when considering the temporal stability of phytoplankton.  相似文献   

13.
《Ecological Complexity》2008,5(3):228-237
Hydrodynamic forcing plays an important role in shaping the dynamics of marine organisms, in particular of plankton. In this work we study the planktonic biological activity in the wake of an island which is close to an upwelling region. Our research is based on numerical analysis of a kinematic flow mimicking the hydrodynamics in the wake, coupled to a three-component plankton model.We use parameter values relevant for the Canary wake, and the main results for a realistic range of parameters in this area are as follows: (a) Primary production is enhanced in the region of the wake opposite to the upwelling zone. (b) There is a strong dependence of the productivity on the inflow conditions of biological material entering the wake transported by the main current. Finally (c) we show that under certain conditions the interplay between wake structures and biological growth leads to plankton blooms inside mesoscale hydrodynamic vortices that act as incubators of primary production.  相似文献   

14.
Understanding the dynamics of upwelling systems, especially the interactions between nutrients and light, has benefited from the application of models of varying complexity. Validation of such models using unialgal cultures or field observations has often proven difficult, but short-term incubations of contained natural assemblages and use of instantaneous physiological indicators offer an alternative approach. In May and June 1996, phytoplankton communities deep in the euphotic zone were sampled from nearly identical physical environments. Replicate samples (20 l volume) were incubated on deck at 50% surface irradiance with either no nutrient additions (Controls) or additions of 20 μM nitrate (Enrichments). Over 24 h, variable fluorescence (F v:F m), nitrate reductase activity (NR), nutrients, chlorophyll a and particulate C and N were monitored. Initial chlorophyll a (~3 μg l?1), phosphate (~0.2 μM), nitrate (~1.5 μM) and silicate (~3 μM) were similar in both months. Changes in NR and F v:F m indicated clear physiological responses to changes in irradiance and added nitrate that differed between months. In May, Controls and Enrichments responded in the same way. F v:F m stayed constant (0.5), chlorophyll a increased slightly, and NR activity increased markedly in all samples. In contrast, in June, treatments responded quite differently. F v:F m was near the theoretical maximum (0.7–0.8) initially and remained constant in Enrichments, but fell sharply in Controls. Declines in controls were also seen for chlorophyll a, and NR activity. Thus, the addition of 20 μM nitrate had a significant effect even though ambient levels of nitrate (>1 μM) should not have been limiting. Small (<20 μm) flagellates predominated in the May samples, but in June large and chain-forming centric diatoms constituted a significant proportion of the phytoplankton community. We conclude that the response of a phytoplankton community to environmental changes can depend on factors that are poorly represented by bulk measurements of chlorophyll, nutrients and particulate elements.  相似文献   

15.
Variations in the concentrations of chlorophyll a, ATP, protein, and carbohydrates in phytoplankton have been investigated in a nearshore upwelling region off the Cape Peninsula. During active upwelling temperatures <10 °C, high nutrient concentrations and low concentrations of the biochemical constituents were measured. When upwelling lessened and conditions stabilized temperatures increased and blooms of phytoplankton appeared. High concentrations of chlorophyll a and ATP and a high protein/carbohydrate ratio were then recorded. At very low nutrient levels chlorophyll a and ATP concentrations were still high but an increase in the acid-soluble carbohydrate content and a corresponding decrease in the protein/carbohydrate ratio was observe. It was concluded that the ratio of protein to carbohydrate was a suitable indicator of the physiological state of a phytoplankton community in the local upwelling region.  相似文献   

16.
During the 1995 spring bloom in Bedford Basin, Nova Scotia,dissolved organic carbon (DOC) in the photic zone was separatedinto low-molecular-weight and colloidal size fractions by cross-flowultrafiltration. DOC, colloidal organic carbon (COC) and low-molecular-weightorganic carbon (LOC) were then analyzed by high-temperaturecatalytic oxidation. COC (associated with the production ofphytoplankton exudates) did not follow the concentration ofbulk chlorophyll a (chi a) or the total number of phytoplanktoncells. Instead, surface-active COC (that adhered to the ultrafiltrationsystem) was produced early during the bloom when the diatomSkeletonema costatum was at a maximum. Later on, as the bloombegan to decline, less surface-active COC (that remained largelyfree of the ultrafiltration surfaces) was produced and was associatedmore with variations in cell number of Chaetoceros socialis,the predominant diatom for most of the bloom. These resultssuggest that chl a or the total number of phytoplankton cellsmay not be reliable indices of the production of COC. On thecontrary, the results suggest that relatively high COC concentrationswere associated with specific diatom species. In addition, themaximum amount of COC was associated during the early stagesof the bloom with a diatom (S.costatum) that was a small fraction(<5.6%) of total phytoplankton cell number. This finding,that relatively large amounts of colloids were associated withexopolymer production during the onset and development of abloom, does not agree with reports suggesting that the productionof exopolymers by diatoms is primarily an end-of-bloom occurrence.  相似文献   

17.
Phytoplankton community structure both in terms of taxonomic composition and size distribution, and growth were examined in a regional upwelling which occurred in a Kuroshio region in summer. Organic carbon abundance of diatoms was markedly enhanced by the upwelling and they accounted for 87% of the total phytoplankton carbon. Nitzschia pungens Grunow was numerically most prominent accompanied by Chaetoceros and Rhizosolenia species. On the other hand, only a small increase was observed in phytoplankton other than diatoms, which consisted of unicellular cyanobacteria, coccolithophorids, gymnodinoids, and so called monads and flagellates. Division rate of diatoms from the upwelled water was twice that of the other forms. This difference in growth response among phytoplankton groups resulted in a shift of community structure to dominance of diatoms from that of the other forms. The time needed for this shift was estimated to be at least ≈ 3 days.  相似文献   

18.
19.
Dialysis cultures of a diatom, Chaetoceros affinis Lauder, and a dinoflagellate, Gymnodnium splendens Lebour were subjected to simulated upwelling conditions which were followed by oligotrophy. Upwelling was simulated by pumping nutrient-enriched sea water past the enclosed cultures. Oligotrophy was simulated by pumping nutrient-poor sea water past the cultures. After the period of upwelling oligotrophy was carried on for 65 days for G. splendens and 80 days for C. affinis. Both algae survived oligotrophic conditions as evidenced by the ability to initiate new cultures or by observation of motility. Nutrient analyses showed that oligotrophy developed slowly — over a period of several days — so that the cultures were subjected to slow changes similar to those which might occur in the sea when upwelling ceases or when upwelled water moves offshore. C. affinis responded to oligotrophy by developing small flagellated cells (male gametes), by losing discrete protoplasts in silicified cells, and by the breaking up of normal chains of cells. Plastids in G. splendens cells became more discrete under oligotrophic conditions and some large non-flagellated cells were observed. The use of dialysis cultures to simulate features of the ocean is discussed.  相似文献   

20.
Coastal upwelling regions, which are affected by equatorward‐wind variability, are among the most productive areas of the oceans. It has been suggested that global warming will lead to a general strengthening of coastal upwelling, with important ecological implications and an impact on fisheries. However, in the case of the Iberian upwelling, the long‐term analysis of climatological variables described here reveals a weakening in coastal upwelling. This is linked to a decrease of zonal sea level pressure gradient, and correlated with an observed increase of sea surface temperature and North Atlantic Oscillation. Weakening of coastal upwelling has led to quantifiable modifications of the ecosystem. In outer shelf waters a drop in new production over the last 40 years is likely related to the reduction of sardine landings at local harbors. On the other hand, in inner shelf and Ria waters, the observed weakening of upwelling has slowed down the residual circulation that introduces nutrients to the euphotic layer, and has increased the stability of the water column. The drop in nutrient levels has been compensated by an increase of organic matter remineralization. The phytoplankton community has responded to those environmental trends with an increase in the percentage of dinoflagellates and Pseudonitzschia spp. and a reduction in total diatoms. The former favors the proliferation of harmful algal blooms and reduces the permitted harvesting period for the mussel aquaculture industry. The demise of the sardine fishery and the potential threat to the mussel culture could have serious socio‐economic consequences for the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号