首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have investigated the mechanism of inhibition and site of action of the novel human metabotropic glutamate receptor 5 (hmGluR5) antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP), which is structurally unrelated to classical metabotropic glutamate receptor (mGluR) ligands. Schild analysis indicated that MPEP acts in a non-competitive manner. MPEP also inhibited to a large extent constitutive receptor activity in cells transiently overexpressing rat mGluR5, suggesting that MPEP acts as an inverse agonist. To investigate the molecular determinants that govern selective ligand binding, a mutagenesis study was performed using chimeras and single amino acid substitutions of hmGluR1 and hmGluR5. The mutants were tested for binding of the novel mGluR5 radioligand [(3)H]2-methyl-6-(3-methoxyphenyl)ethynyl pyridine (M-MPEP), a close analog of MPEP. Replacement of Ala-810 in transmembrane (TM) VII or Pro-655 and Ser-658 in TMIII with the homologous residues of hmGluR1 abolished radioligand binding. In contrast, the reciprocal hmGluR1 mutant bearing these three residues of hmGluR5 showed high affinity for [(3)H]M-MPEP. Radioligand binding to these mutants was also inhibited by 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester (CPCCOEt), a structurally unrelated non-competitive mGluR1 antagonist previously shown to interact with residues Thr-815 and Ala-818 in TMVII of hmGluR1. These results indicate that MPEP and CPCCOEt bind to overlapping binding pockets in the TM region of group I mGluRs but interact with different non-conserved residues.  相似文献   

2.
One of the BB rat diabetes (diabetes mellitus (DM)) susceptibility genes is an Ian5 mutation resulting in premature apoptosis of naive T cells. Impaired differentiation of regulatory T cells has been suggested as one possible mechanism through which this mutation contributes to antipancreatic autoimmunity. Using Ian5 congenic inbred rats (wild-type (non-lyp BB) and mutated (BB)), we assessed the development of BB regulatory CD8(-)4(+)25(+)T cells and their role in the pathogenesis of DM. BB rats have normal numbers of functional CD8(-)4(+)25(+)Foxp3(+) thymocytes. The proportion of CD25(+) cells among CD8(-)4(+) recent thymic emigrants is also normal while it is increased among more mature CD8(-)4(+) T cells. However, BB CD8(-)4(+)25(+)Foxp3(+) thymocytes fail to undergo homeostatic expansion and survive upon transfer to nude BB rats while Foxp3 expression is reduced in mature CD8(-)4(+)25(+) T cells suggesting that these cells are mostly activated cells. Consistent with this interpretation, peripheral BB CD8(-)4(+)25(+) T cells do not suppress anti-TCR-mediated activation of non-lyp BB CD8(-)4(+)25(-) T cells but rather stimulate it. Furthermore, adoptive transfer of unfractionated T cells from diabetic BB donors induces DM in 71% of the recipients while no DM occurred when donor T cells are depleted of CD8(-)4(+)25(+) cells. Adoptive transfer of 10(6) regulatory non-lyp BB CD8(-)4(+)25(+) T cells to young BB rats protects the recipients from DM. Taken together, these results demonstrate that the BB rat Ian5 mutation alters the survival and function of regulatory CD8(-)4(+)25(+) T cells at the post-thymic level, resulting in clonal expansion of diabetogenic T cells among peripheral CD8(-)4(+)25(+) cells.  相似文献   

3.
Murine CD4(+)CD25(+) T regulatory (Treg) cells were cocultured with CD4(+)CD25(-) Th cells and APCs or purified B cells and stimulated by anti-CD3 mAb. Replacement of APCs by B cells did not significantly affect the suppression of CD4(+)CD25(-) Th cells. When IL-4 was added to separate cell populations, this cytokine promoted CD4(+)CD25(-) Th and CD4(+)CD25(+) Treg cell proliferation, whereas the suppressive competence of CD4(+)CD25(+) Treg cells was preserved. Conversely, IL-4 added to coculture of APCs, CD4(+)CD25(-) Th cells, and CD4(+)CD25(+) Treg cells inhibited the suppression of CD4(+)CD25(-) Th cells by favoring their survival through the induction of Bcl-2 expression. At variance, suppression was not affected by addition of IL-13, although this cytokine shares with IL-4 a receptor chain. When naive CD4(+)CD25(-) Th cells were replaced by Th1 and Th2 cells, cell proliferation of both subsets was equally suppressed, but suppression was less pronounced compared with that of CD4(+)CD25(-) Th cells. IL-4 production by Th2 cells was also inhibited. These results indicate that although CD4(+)CD25(+) Treg cells inhibit IL-4 production, the addition of IL-4 counteracts CD4(+)CD25(+) Treg cell-mediated suppression by promoting CD4(+)CD25(-) Th cell survival and proliferation.  相似文献   

4.
CD4(+)CD25(+) T regulatory (Treg) cells are a CD4(+) T cell subset involved in the control of the immune response. In vitro, murine CD4(+)CD25(+) Treg cells inhibit CD4(+)CD25(-) Th cell proliferation induced by anti-CD3 mAb in the presence of APCs. The addition of IL-4 to cocultured cells inhibits CD4(+)CD25(+) Treg cell-mediated suppression. Since all cell types used in the coculture express the IL-4Ralpha chain, we used different combinations of CD4(+)CD25(-) Th cells, CD4(+)CD25(+) Treg cells, and APCs from wild-type IL-4Ralpha(+/+) or knockout IL-4Ralpha(-/-) mice. Results show that the engagement of the IL-4Ralpha chain on CD4(+)CD25(-) Th cells renders these cells resistant to suppression. Moreover, the addition of IL-4 promotes proliferation of IL-4Ralpha(+/+)CD4(+)CD25(+) Treg cells, which preserve full suppressive competence. These findings support an essential role of IL-4 signaling for CD4(+)CD25(-) Th cell activation and indicate that IL-4-induced proliferation of CD4(+)CD25(+) Treg cells is compatible with their suppressive activity.  相似文献   

5.
6.
Six metabolites were obtained as a result of microbial transformation of (+)-nootkatone (1) by the fungal strains: Botrytis, Didymosphaeria, Aspergillus, Chaetomium and Fusarium. Their structure were established as (+)-(4R,5S,7R,9R)-9α-hydroxynootkatone (2), (+)-(4R,5S,7R)-13-hydroxynootkatone (3) and (+)-(4R,5S,7R,9R,11S)-11,12-epoxy-9α-hydroxynootkatone (4), (+)-(4R,5S,7R,11S)-11,12-epoksynootkatone (5), (+)-(4R,5S,7R)-11,12-dihydroxynootkatone (6) and (+)-(4R,5S,7R)-7,11,12-trihydroxynootkatone (7) on the basis of their spectral data. Two products: (4) and (7) were not previously reported in the literature. The antiproliferative activity of (+)-nootkatone (1) and isolated metabolites (2-7) of its biotransformation has been evaluated.  相似文献   

7.
BALB/c IL-4Ralpha(-/-) mice, despite the absence of IL-4/IL-13 signaling and potent Th2 responses, remain highly susceptible to Leishmania major substain LV39 due exclusively to residual levels of IL-10. To address the contribution of CD4(+)CD25(+) T regulatory (Treg) cells to IL-10-mediated susceptibility, we depleted CD4(+)CD25(+) cells in vivo and reconstituted IL-4Ralpha x RAG2 recipients with purified CD4(+)CD25(-) T cells. Although anti-CD25 mAb treatment significantly decreased parasite numbers in IL-4Ralpha(-/-) mice, treatment with anti-IL-10R mAb virtually eliminated L. major parasites in both footpad and dermal infection sites. In addition, IL-4Ralpha x RAG2 mice reconstituted with CD4(+) cells depleted of CD25(+) Treg cells remained highly susceptible to infection. Analysis of L. major-infected BALB/c and IL-4Ralpha(-/-) inflammatory sites revealed that the majority of IL-10 was secreted by the CD4(+)Foxp3(-) population, with a fraction of IL-10 coming from CD4(+)Foxp3(+) Treg cells. All T cell IFN-gamma production was also derived from the CD4(+)Foxp3(-) population. Nevertheless, the IL-4Ralpha(-/-)-infected ear dermis, but not draining lymph nodes, consistently displayed 1.5- to 2-fold greater percentages of CD4(+)CD25(+) and CD4(+)Foxp3(+) Treg cells compared with the BALB/c-infected dermis. Thus, CD4(+)Foxp3(-) T cells are a major source of IL-10 that disrupts IFN-gamma activity in L. major-susceptible BALB/c mice. However, the increase in CD4(+)Foxp3(+) T cells within the IL-4Ralpha(-/-) dermis implies a possible IL-10-independent role for Treg cells within the infection site, and may indicate a novel immune escape mechanism used by L. major parasites in the absence of IL-4/IL-13 signaling.  相似文献   

8.
Lineage analysis of the hemangioblast as defined by FLK1 and SCL expression   总被引:20,自引:0,他引:20  
Accumulating studies support the idea that a common progenitor, termed the hemangioblast, generates both hematopoietic and endothelial cell lineages. To better define the relationship between these cell lineages, we have generated knock-in embryonic stem (ES) cells carrying a non-functional human CD4 at the Scl locus. By using in vitro differentiated Scl(+/CD4) ES cells, we demonstrate that FLK1 and SCL are molecular determinants of the hemangioblast. Furthermore, our studies demonstrate that hematopoietic and endothelial cells develop via distinct, sequential generation of FLK1 and SCL-expressing cells. FLK1(+)CD4(-) cells first arise in developing embryoid bodies. The Scl gene is turned on within FLK1(+)CD4(-) cells to give rise to FLK1(+)CD4(+) cells. Alternatively, a subpopulation of the initial FLK1(+)CD4(-) cells remains as SCL negative. Within the FLK1(+)CD4(+) cells, FLK1 is down regulated to generate FILK1(-)CD4(+) cells. Replating studies demonstrate that hematopoietic progenitors are enriched within FLK1(+)CD4(+) and FLK1(-)CD4(+) cells, while endothelial cells develop from FLK1(+)CD4(+) and FLK1(+)CD4(-) cell populations.  相似文献   

9.
Oral immunization with a Salmonella vaccine vector expressing enterotoxigenic Escherichia coli colonization factor Ag I (CFA/I) can protect against collagen-induced arthritis (CIA) by dampening IL-17 and IFN-γ via enhanced IL-4, IL-10, and TGF-β. To identify the responsible regulatory CD4(+) T cells making the host refractory to CIA, Salmonella-CFA/I induced CD39(+)CD4(+) T cells with enhanced apyrase activity relative to Salmonella vector-immunized mice. Adoptive transfer of vaccine-induced CD39(+)CD4(+) T cells into CIA mice conferred complete protection, whereas CD39(-)CD4(+) T cells did not. Subsequent analysis of vaccinated Foxp3-GFP mice revealed the CD39(+) T cells were composed of Foxp3-GFP(-) and Foxp3-GFP(+) subpopulations. Although each adoptively transferred Salmonella-CFA/I-induced Foxp3(-) and Foxp3(+)CD39(+)CD4(+) T cells could protect against CIA, each subset was not as efficacious as total CD39(+)CD4(+) T cells, suggesting their interdependence for optimal protection. Cytokine analysis revealed Foxp3(-) CD39(+)CD4(+) T cells produced TGF-β, and Foxp3(+)CD39(+)CD4(+) T cells produced IL-10, showing a segregation of function. Moreover, donor Foxp3-GFP(-) CD4(+) T cells converted to Foxp3-GFP(+) CD39(+)CD4(+) T cells in the recipients, showing plasticity of these regulatory T cells. TGF-β was found to be essential for protection because in vivo TGF-β neutralization reversed activation of CREB and reduced the development of CD39(+)CD4(+) T cells. Thus, CD39 apyrase-expressing CD4(+) T cells stimulated by Salmonella-CFA/I are composed of TGF-β-producing Foxp3(-) CD39(+)CD4(+) T cells and support the stimulation of IL-10-producing Foxp3(+) CD39(+)CD4(+) T cells.  相似文献   

10.
CD4(+)CD25(+) T cells are critical mediators of peripheral immune tolerance. However, many developmental and functional characteristics of these cells are unknown, and knowledge of human regulatory T cells is particularly limited. To better understand how human CD4(+)CD25(+) T cells develop and function, we examined the diversity of CD4(+)CD25(+) and CD4(+)CD25(-) T cell repertoires in both thymus and peripheral blood. Levels of T receptor excision circles (TREC) were comparable in purified CD4(+)CD25(+) and CD4(+)CD25(-) thymic populations, but were significantly higher than those in samples derived from peripheral blood, consistent with murine studies demonstrating thymic development of CD4(+)CD25(+) regulatory T cells. Surprisingly, CD4(+)CD25(-) T cells isolated from peripheral blood had greater TREC quantities than their CD4(+)CD25(+) counterparts, supporting the possibility of extrathymic expansion as well. CD4(+)CD25(+) and CD4(+)CD25(-) T cells from a given individual showed overlapping profiles with respect to diversity by Vbeta staining and spectratyping. Interestingly, CD4(+)CD25(+) T cells have lower quantities of CD3 than CD4(+)CD25(-) T cells. Collectively, these data suggest that human CD4(+)CD25(+) T cells recognize a similar array of Ags as CD4(+)CD25(-) T cells. However, reduced levels of TCR on regulatory T cells suggest different requirements for activation and may contribute to how the immune system regulates whether a particular response is suppressed or augmented.  相似文献   

11.
Percentages of activated T cells correlate with HIV-1 disease progression, but the underlying mechanisms are not fully understood. We hypothesized that HLA-DR(+) CD38(+) (DR(+) 38(+)) CD4(+) T cells produce the majority of HIV-1 due to elevated expression of CCR5 and CXCR4. In phytohemagglutinin (PHA)-stimulated CD8-depleted peripheral blood mononuclear cells (PBMC) infected with HIV-1 green fluorescent protein (GFP) reporter viruses, DR(-) 38(+) T cells constituted the majority of CCR5 (R5)-tropic (median, 62%) and CXCR4 (X4)-tropic HIV-1-producing cells (median, 61%), although cell surface CCR5 and CXCR4 were not elevated in this subset of cells. In lymph nodes from untreated individuals infected with R5-tropic HIV-1, percentages of CCR5(+) cells were elevated in DR(+) 38(+) CD4(+) T cells (median, 36.4%) compared to other CD4(+) T-cell subsets (median values of 5.7% for DR(-) 38(-) cells, 19.4% for DR(+) 38(-) cells, and 7.6% for DR(-) 38(+) cells; n = 18; P < 0.001). In sorted CD8(-) lymph node T cells, median HIV-1 RNA copies/10(5) cells was higher for DR(+) 38(+) cells (1.8 × 10(6)) than for DR(-) 38(-) (0.007 × 10(6)), DR(-) 38(+) (0.064 × 10(6)), and DR(+) 38(-) (0.18 × 10(6)) subsets (n = 8; P < 0.001 for all). After adjusting for percentages of subsets, a median of 87% of viral RNA was harbored by DR(+) 38(+) cells. Percentages of CCR5(+) CD4(+) T cells and concentrations of CCR5 molecules among subsets predicted HIV-1 RNA levels among CD8(-) DR/38 subsets (P < 0.001 for both). Median HIV-1 DNA copies/10(5) cells was higher in DR(+) 38(+) cells (5,360) than in the DR(-) 38(-) (906), DR(-) 38(+) (814), and DR(+) 38(-) (1,984) subsets (n = 7; P ≤ 0.031). Thus, DR(+) 38(+) CD4(+) T cells in lymph nodes have elevated CCR5 expression, are highly susceptible to infection with R5-tropic virus, and produce the majority of R5-tropic HIV-1. PBMC assays failed to recapitulate in vivo findings, suggesting limited utility. Strategies to reduce numbers of DR(+) 38(+) CD4(+) T cells may substantially inhibit HIV-1 replication.  相似文献   

12.
We have previously demonstrated that IL-7 is essential for the persistence of colitis as a survival factor of colitogenic IL-7Rα-expressing memory CD4(+) T cells. Because IL-7Rα is broadly expressed on various immune cells, it is possible that the persistence of colitogenic CD4(+) T cells is affected by other IL-7Rα-expressing non-T cells. To test this hypothesis, we conducted two adoptive transfer colitis experiments using IL-7Rα(-/-) CD4(+)CD25(-) donor cells and IL-7Rα(-/-) × RAG-2(-/-) recipient mice, respectively. First, IL-7Rα expression on colitic lamina propria (LP) CD4(+) T cells was significantly higher than on normal LP CD4(+) T cells, whereas expression on other colitic LP immune cells, (e.g., NK cells, macrophages, myeloid dendritic cells) was conversely lower than that of paired LP cells in normal mice, resulting in predominantly higher expression of IL-7Rα on colitogenic LP CD4(+) cells, which allows them to exclusively use IL-7. Furthermore, RAG-2(-/-) mice transferred with IL-7Rα(-/-) CD4(+)CD25(-) T cells did not develop colitis, although LP CD4(+) T cells from mice transferred with IL-7Rα(-/-) CD4(+)CD25(-) T cells were differentiated to CD4(+)CD44(high)CD62L(-) effector-memory T cells. Finally, IL-7Rα(-/-) × RAG-2(-/-) mice transferred with CD4(+)CD25(-) T cells developed colitis similar to RAG-2(-/-) mice transferred with CD4(+)CD25(-) T cells. These results suggest that IL-7Rα expression on colitogenic CD4(+) T cells, but not on other cells, is essential for the development of chronic colitis. Therefore, therapeutic approaches targeting the IL-7/IL-7R signaling pathway in colitogenic CD4(+) T cells may be feasible for the treatment of inflammatory bowel diseases.  相似文献   

13.
CD4(+)CD25(+) T cells have immunoregulatory and suppressive functions and are responsible for suppressing self-reactive cells and maintaining self-tolerance. In addition to CD4(+)CD25(+) T cells, there is some evidence that a fraction of CD4(+)CD25(-) T cells exhibit suppressive activity in vitro or in vivo. We have shown, using aged mice, that aging not only leads to a decline in the ability to mount CD4(+)CD25(-) T cell responses, but, at the same time, renders aged CD4(+)CD25(-) T cells suppressive. In this study we report two newly established mAbs that could abrogate the suppressive function of aged CD4(+)CD25(-) T cells. These mAbs recognized the same protein, the transmembrane phosphatase CD45. Cross-linking of CD45 on aged CD4(+)CD25(-) T cells was required for the disruption of their suppressive activity. Surprisingly, these mAbs also abrogated the suppressive action of CD4(+)CD25(+) T cells in vitro. Our results demonstrate an unexpected function of CD45 as a negative regulator neutralizing the suppressive activity of aged CD4(+)CD25(-) and young CD4(+)CD25(+) T cells.  相似文献   

14.
Broad T cell depletion has been used as an integral part of treatment in transplantation and autoimmune diseases. Following depletion, residual T cells undergo homeostatic proliferation and convert to memory-like T cells. In this study, we investigated the effect of T cell depletion by antilymphocyte serum (ALS), a polyclonal anti-T cell Ab, on CD4(+) regulatory T cells. After ALS treatment, CD4(+)CD25(+) T cells underwent proliferation and expressed a memory T cell marker, CD44. One week after ALS treatment, both CD25(+) and CD25(-) T cells exhibited increased suppression of alloresponses in vitro, which waned thereafter to the levels mediated by naive CD25(+) and CD25(-) T cells. By real-time PCR analyses, ALS treatment of CD4-deficient mice adoptively transferred with Thy1.2(+)CD4(+)CD25(+)Foxp3(+) and Thy1.1(+)CD4(+)CD25(-)Foxp3(-) T cells resulted in the appearance of Thy1.2(+)CD4(+)CD25(-)Foxp3(+) and Thy1.1(+)CD4(+)CD25(+)Foxp3(+) T cells, suggesting the conversion between CD25(+) and CD25(-) T cells. Naive CD25(+) T cells expressed a higher level of intracellular Bcl-x(L) than CD25(-) T cells. Up-regulation of the Bcl-x(L) molecule during ALS-induced homeostatic expansion further promoted survival of CD25(+) and, to a lessor degree, CD25(-) cells. These results indicate that CD25(+) T cells are spared from ALS-mediated deletion, with some CD25(+) T cells converting to CD25(-) T cells, and continue to exhibit regulatory activity. The concomitant presence of T cell deletion and continuous regulatory T cell activity may underlie the therapeutic effect of ALS, particularly in treatment of autoimmune diseases.  相似文献   

15.
The identification of regulatory T (Treg) cells was originally based on CD25 expression; however, CD25 is also expressed by activated effector T cells. FoxP3 is a more definitive marker of Treg cells, and CD4(+) FoxP3(+) CD25(+) T cells are considered the dominant natural Treg (nTreg) population. It has been suggested that certain CD4(+) FoxP3(+) Treg cells do not express CD25. In this study, we used a murine model of respiratory infection with Bordetella pertussis to examine the role of Treg cells in protective immunity in the lung. We first demonstrated that CD4(+) FoxP3(+) CD25(-) cells are the dominant Treg population in the lung, gut and liver. Pre-activated lung CD4(+) FoxP3(+) CD25(-) cells suppressed CD4(+) effector T cells in vitro, which was partly mediated by IL-10 and not dependent on cell contact. Furthermore, CD4(+) FoxP3(+) CD25(-) IL-10(+) T cells were found in the lungs of mice at the peak of infection with B. pertussis. The rate of bacterial clearance was not affected by depletion of CD25(+) cells or in IL-10-deficient (IL-10(-/-) ) mice, but was compromised in CD25-depleted IL-10(-/-) mice. Our findings suggest that IL-10-producing CD4(+) FoxP3(+) CD25(-) T cells represent an important regulatory cell in the lung.  相似文献   

16.
17.
CD4(+)CD25(+) regulatory T cells in normal animals are engaged in the maintenance of immunological self-tolerance and prevention of autoimmune disease. However, accumulating evidence suggests that a fraction of the peripheral CD4(+)CD25(-) T cell population also possesses regulatory activity in vivo. Recently, it has been shown glucocorticoid-induced TNFR family-related gene (GITR) is predominantly expressed on CD4(+)CD25(+) regulatory T cells. In this study, we show evidence that CD4(+)GITR(+) T cells, regardless of the CD25 expression, regulate the mucosal immune responses and intestinal inflammation. SCID mice restored with the CD4(+)GITR(-) T cell population developed wasting disease and severe chronic colitis. Cotransfer of CD4(+)GITR(+) population prevented the development of CD4(+)CD45RB(high) T cell-transferred colitis. Administration of anti-GITR mAb-induced chronic colitis in mice restored both CD45RB(high) and CD45RB(low) CD4(+) T cells. Interestingly, both CD4(+)CD25(+) and CD4(+)CD25(-) GITR(+) T cells prevented wasting disease and colitis. Furthermore, in vitro studies revealed that CD4(+)CD25(-)GITR(+) T cells as well as CD4(+)CD25(+)GITR(+) T cells expressed CTLA-4 intracellularly, showed anergic, suppressed T cell proliferation, and produced IL-10 and TGF-beta. These data suggest that GITR can be used as a specific marker for regulatory T cells controlling mucosal inflammation and also as a target for treatment of inflammatory bowel disease.  相似文献   

18.
Classical CD4(+) and CD8(+) T cells recognize Ag presented by MHC class II (MHCII) and MHC class I (MHCI), respectively. However, our results show that CD4(-/-) mice mount a strong, readily detectable CD8(+) T cell response to MHCII-restricted epitopes after a primary bacterial or viral infection. These MHCII-restricted CD8(+)CD4(-) T cells are more similar to classical CD8(+) T cells than to CD4(+) T cells in their expression of effector functions during a primary infection, yet they also differ from MHCI-restricted CD8(+) T cells by their inability to produce high levels of the cytolytic molecule granzyme B. After resolution of a primary infection, epitope-specific MHCII-restricted T cells in CD4(-/-) mice persist for a long period of time as memory T cells. Surprisingly, upon reinfection the secondary MHCII-restricted response in CD4(-/-) mice consists mainly of CD8(-)CD4(-) T cells. In contrast to CD8(+) T cells, MHCII-restricted CD8(-)CD4(-) T cells are capable of producing IL-2 in addition to IFN-gamma and thus appear to have attributes characteristic of CD4(+) T cells rather than CD8(+) T cells. Therefore, MHCII-restricted T cells in CD4(-/-) mice do not share all phenotypic and functional characteristics with MHCI-restricted CD8(+) T cells or with MHCII-restricted CD4(+) T cells, but, rather, adopt attributes from each of these subsets. These results have implications for understanding thymic T cell selection and for elucidating the mechanisms regulating the peripheral immune response and memory differentiation.  相似文献   

19.
CD25(+)CD4(+) regulatory T cells suppress immune responses and are believed to play roles in preventing autoimmune diseases. However, the mechanism(s) underlying the suppression and the regulation of their homeostasis remain to be elucidated. Here we show that these regulatory T cells downregulated CD25(-)CD4(+) T-cell-mediated production of IL-12 from antigen-presenting cells, which can act as a growth factor for CD25(-)CD4(+) T cells. We further found that CD25(+)CD4(+) T cells, despite their well-documented "anergic" nature, proliferate significantly in vitro only when CD25(-)CD4(+) T cells are present. Notably, this proliferation was strongly dependent on IL-2 and relatively independent of IL-12. Thus, CD25(+)CD4(+) T cells suppress CD25(-)CD4(+) T-cell responses, at least in part, by inhibiting IL-12 production while they themselves can undergo proliferation with the mediation of CD25(-)CD4(+) T cells in vitro. These results offer a novel negative feedback system involving a tripartite interaction among CD25(+)CD4(+) and CD25(-)CD4(+) T cells, and APCs that may contribute to the termination of immune responses.  相似文献   

20.
Murine CD4(+)CD25(+) regulatory cells have been reported to express latency-associated peptide (LAP) and TGF-beta on the surface after activation, and exert regulatory function by the membrane-bound TGF-beta in vitro. We have now found that a small population of CD4(+) T cells, both CD25(+) and CD25(-), can be stained with a goat anti-LAP polyclonal Ab without being stimulated. Virtually all these LAP(+) cells are also positive for thrombospondin, which has the ability to convert latent TGF-beta to the active form. In the CD4(+)CD45RB(high)-induced colitis model of SCID mice, regulatory activity was exhibited not only by CD25(+)LAP(+) and CD25(+)LAP(-) cells, but also by CD25(-)LAP(+) cells. CD4(+)CD25(-)LAP(+) T cells were part of the CD45RB(low) cell fraction. CD4(+)CD25(-)LAP(-)CD45RB(low) cells had minimal, if any, regulatory activity in the colitis model. The regulatory function of CD25(-)LAP(+) cells was abrogated in vivo by anti-TGF-beta mAb. These results identify a new TGF-beta-dependent regulatory CD4(+) T cell phenotype that is CD25(-) and LAP(+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号