Human papillomavirus-like particles (HPV VLPs) have shown considerable promise as a parenteral vaccine for the prevention of cervical cancer and its precursor lesions. Parenteral vaccines are expensive to produce and deliver, however, and therefore are not optimal for use in resource-poor settings, where most cervical HPV disease occurs. Transgenic plants expressing recombinant vaccine immunogens offer an attractive and potentially inexpensive alternative to vaccination by injection. For example, edible plants can be grown locally and can be distributed easily without special training or equipment. To assess the feasibility of an HPV VLP-based edible vaccine, in this study we synthesized a plant codon-optimized version of the HPV type 11 (HPV11) L1 major capsid protein coding sequence and introduced it into tobacco and potato. We show that full-length L1 protein is expressed and localized in plant cell nuclei and that expression of L1 in plants is enhanced by removal of the carboxy-terminal nuclear localization signal sequence. We also show that plant-expressed L1 self-assembles into VLPs with immunological properties comparable to those of native HPV virions. Importantly, ingestion of transgenic L1 potato was associated with activation of an anti-VLP immune response in mice that was qualitatively similar to that induced by VLP parenteral administration, and this response was enhanced significantly by subsequent oral boosting with purified insect cell-derived VLPs. Thus, papillomavirus L1 protein can be expressed in transgenic plants to form immunologically functional VLPs, and ingestion of such material can activate potentially protective humoral immune responses. 相似文献
Recombinant papillomavirus-like particles have recently been shown to be highly effective for the prevention of papillomavirus infections and associated tumors, and a virus-like particle-based vaccine against the most prevalent HPV causing genital infection in humans will be developed in the near future. Another use of these virus-like particles may lie in gene therapy and DNA immunization. We report here that human papillomavirus-like particles composed of the major capsid protein (L1) of HPV-16 are able to package unrelated plasmid DNA in vitro and then to deliver this foreign DNA to eukaryotic cells with the subsequent expression of the encoded gene. The results indicate higher gene transfer than with DNA alone or with liposome. Virus-like particles are a very promising vehicle for delivering genetic material into target cells. Moreover, the preparation of the gene transfer vehicle is relatively easy. 相似文献
Human papillomavirus virus-like particles (VLPs) have recently been used to deliver genes into mammalian cells in vitro and in vivo. Here, we investigated whether VLPs may serve as an efficient carrier of low molecular weight compounds (e.g. hormones, vitamins, peptides etc.) into cells. COS7 cells were incubated with recombinant HPV-16L1/L2 VLPs labelled with the fluorescence dye carboxyfluorescein diacetate succinimidyl ester. Using flow cytometry, we demonstrate that labelled VLPs can specifically bind to the cell surface followed by their complete internalisation. Our results indicate that VLPs are promising vehicles for highly efficient delivery of low molecular weight compounds into cells. 相似文献
Obesity is associated with a variety of disorders and is a significant health problem in developed countries. One factor controlling the level of adiposity is the differentiation of cells into adipocytes. Adipocyte differentiation requires expression of peroxisome proliferator-activated receptor γ (PPARγ), which is activated by ligands to regulate expression of genes involved in adipocyte differentiation. Although 15-deoxy-Δ(12,14)-prostaglandin (PG) J(2) (15d-PGJ(2)) has long been known to be a potent activator of PPARγ, the importance of its synthesis in adipose tissue in vivo is not clear. The current study utilized mice deficient in cyclooxygenase-2 (COX-2) to examine the role of COX-2-derived PGs as in vivo modulators of adiposity. As compared with strain- and age-matched wild-type controls, the genetic deficiency of COX-2 resulted in a significant reduction in total body weight and percent body fat. Although there were no significant differences in food consumption between groups, COX-2-deficient mice showed increased metabolic activity. Epididymal adipose tissue from wild-type mice produced a significantly greater level of 15d-PGJ(2), as compared with adipose tissue isolated from mice deficient in COX-2. Furthermore, production of the precursor required for 15d-PGJ(2) formation, PGD(2), was also significantly reduced in COX-2-deficient adipose tissue. The expression of markers for differentiated adipocytes was significantly reduced in adipose tissue from COX-2-deficient mice, whereas preadipocyte marker expression was increased. Macrophage-dependent inflammation was also significantly reduced in adipose tissue of COX-2-deficient mice. These findings suggest that reduced adiposity in COX-2-deficient mice results from attenuated PPARγ ligand production and adipocyte differentiation. 相似文献
Dear Editor,
The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has resulted in unprecedented public health and ... 相似文献
Passive muscle stretch performed during a period of post-exercise muscle ischemia (PEMI) increases muscle sympathetic nerve activity (MSNA), and this suggests that the muscle metabolites may sensitize mechanoreceptors in healthy humans. However, the responsible substance(s) has not been studied thoroughly in humans. Human and animal studies suggest that cyclooxygenase products sensitize muscle mechanoreceptors. Thus we hypothesized that local cyclooxygenase inhibition in exercising muscles could attenuate MSNA responses to passive muscle stretch during PEMI. Blood pressure (Finapres), heart rate, and MSNA (microneurography) responses to passive muscle stretch were assessed in 13 young healthy subjects during PEMI before and after cyclooxygenase inhibition, which was accomplished by a local infusion of 6 mg ketorolac tromethamine in saline via Bier block. In the second experiment, the same amount of saline was infused via the Bier block. Ketorolac Bier block decreased prostaglandin synthesis to approximately 34% of the baseline. Before ketorolac Bier block, passive muscle stretch evoked significant increases in MSNA (P < 0.005) and mean arterial blood pressure (P < 0.02). After ketorolac Bier block, passive muscle stretch did not evoke significant responses in MSNA (P = 0.11) or mean arterial blood pressure (P = 0.83). Saline Bier block had no effect on the MSNA or blood pressure response to ischemic stretch. These observations indicate that cyclooxygenase inhibition attenuates MSNA responses seen during PEMI and suggest that cyclooxygenase products sensitize the muscle mechanoreceptors. 相似文献
Human papillomavirus-like particles (HPV-VLP) are a candidate vaccine for prevention of HPV infection, and also are a candidate for an immunogenic delivery system for incorporated antigen. VLP activate in vitro generated dendritic cells (DC) but not Langerhans cells (LC); however, the mechanism of this activation is unknown. We have shown that uptake and activation of DC by VLP involves proteoglycan receptors and can be inhibited by heparin. Heparin has been shown to activate DC by signalling through Toll-like receptor 4 (TLR4) and nuclear factor (NF)-kappaB. The pathway of DC activation by VLP was further investigated in the present study. Exposure to VLP induced costimulatory molecule expression, RelB translocation and IL-10 production by DC but not by LC. The lack of LC activation was reversible when TGF-beta was removed from the LC medium. VLP-induced induction of costimulatory molecule expression, RelB activation and cytokine secretion by DC was blocked by inhibition of NF-kappaB activation, heparin or TLR4 mAb. The data provide evidence that HPV-VLP signal DC through a pathway involving proteoglycan receptors, TLR4 and NF-kappaB, and shed light on the mechanism by which VLP stimulate immunity in the absence of adjuvants in vivo. LC may resist activation in normal epithelium abundant in TGF-beta, but not in situations in which TGF-beta concentrations are reduced. 相似文献
Macrophages in adipose tissue contribute to inflammation and the development of insulin resistance in obesity. Exposure of macrophages to saturated fatty acids alters cell metabolism and activates pro-inflammatory signaling. How fatty acids influence macrophage mitochondrial dynamics is unclear. We investigated the mechanism of palmitate-induced mitochondrial fragmentation and its impact on inflammatory responses in primary human macrophages. Fatty acids, such as palmitate, caused mitochondrial fragmentation in human macrophages. Increased mitochondrial fragmentation was also observed in peritoneal macrophages from hyperlipidemic apolipoprotein E knockout mice. Fatty acid-induced mitochondrial fragmentation was independent of the fatty acid chain saturation and required dynamin-related protein 1 (DRP1). Mechanistically, mitochondrial fragmentation was regulated by incorporation of palmitate into mitochondrial phospholipids and their precursors. Palmitate-induced endoplasmic reticulum stress and loss of mitochondrial membrane potential did not contribute to mitochondrial fragmentation. Macrophages treated with palmitate maintained intact mitochondrial respiration and ATP levels. Pharmacological or genetic inhibition of DRP1 enhanced palmitate-induced mitochondrial ROS production, c-Jun phosphorylation, and inflammatory cytokine expression. Our results indicate that mitochondrial fragmentation is a protective mechanism attenuating inflammatory responses induced by palmitate in human macrophages. 相似文献
Due to technical limitations, little knowledge exists on the composition of Ag-specific polyclonal Ab responses. Hence, we here present a molecular analysis of two representative human Ab repertoires isolated by using a novel single-cell cloning approach. The observed genetic diversity among tetanus toxoid-specific plasma cells indicate that human polyclonal repertoires are limited to the order of 100 B cell clones and hypermutated variants thereof. Affinity and kinetic binding constants are log-normally distributed, and median values are close to the proposed affinity ceilings for positive selection. Abs varied a million-fold in affinity but were restricted in their off-rates with an upper limit of 2 x 10(-3) s(-1). Identification of Abs of high affinity without hypermutations in combination with a modest effect of hypermutations on observed affinity increases indicate that Abs selected from the naive repertoire are not only of low affinity but cover a relatively large span in affinity, reaching into the subnanomolar range. 相似文献
Hepsin is a type II transmembrane serine protease that is expressed in several human tissues. Overexpression of hepsin has been found to correlate with tumour progression and metastasis, which is so far best studied for prostate cancer, where more than 90% of such tumours show this characteristic. To enable improved future patient treatment, we have developed a monoclonal humanized antibody that selectively inhibits human hepsin and does not inhibit other related proteases. We found that our antibody, hH35, potently inhibits hepsin enzymatic activity at nanomolar concentrations. Kinetic characterization revealed non-linear, slow, tight-binding inhibition. This correlates with the crystal structure we obtained for the human hepsin-hH35 antibody Fab fragment complex, which showed that the antibody binds hepsin around α3-helix, located far from the active centre. The unique allosteric mode of inhibition of hH35 is distinct from the recently described HGFA (hepatocyte growth factor activator) allosteric antibody inhibition. We further explain how a small change in the antibody design induces dramatic structural rearrangements in the hepsin antigen upon binding, leading to complete enzyme inactivation. 相似文献
The high-yield expression of a neutralizing epitope from human immunodeficiency virus type 1 (HIV-1) on the surface of a plant virus and its immunogenicity are presented. The highly conserved ELDKWA epitope from glycoprotein (gp) 41 was expressed as an N-terminal translational fusion with the potato virus X (PVX) coat protein. The resulting chimeric virus particles (CVPs), purified and used to immunize mice intraperitoneally or intranasally, were able to elicit high levels of HIV-1-specific immunoglobulin G (IgG) and IgA antibodies. Furthermore, the human immune response to CVPs was studied with severe combined immunodeficient mice reconstituted with human peripheral blood lymphocytes (hu-PBL-SCID). hu-PBL-SCID mice immunized with CVP-pulsed autologous dendritic cells were able to mount a specific human primary antibody response against the gp41-derived epitope. Notably, sera from both normal and hu-PBL-SCID mice showed an anti-HIV-1-neutralizing activity. Thus, PVX-based CVPs carrying neutralizing epitopes can offer novel perspectives for the development of effective vaccines against HIV and, more generally, for the design of new vaccination strategies in humans. 相似文献
In an attempt to trigger increased mucosal secretory immune responses against bacterial surface antigens, we constructed an optimized human interleukin (hIL)-6-secreting Salmonella typhimurium strain (X4064(pCH1A+pYL3E)), utilizing the hemolysin (Hly) exporter for secretory delivery of a functional hIL-6-hemolysin fusion protein (hIL-6-HlyA(s)). Through stable introduction of a second hIL-6-HlyA(s) expression plasmid (pYL3E) in the previously described X4064(pCH1A) strain, hIL-6-HlyA(s) secretion efficiencies were increased by at least 10-fold. As pCH1A in the parental strain, pYL3E was stable in vitro in the absence of antibiotic selection and in vivo neither did plasmids interfere in their stabilities. Increased hIL-6-HlyA(s) expression did not adversely interfere with bacterial growth. Comparative immunization experiments in mice with oral application of the different hIL-6-secreting strains revealed that increased in situ hIL-6-production influenced systemic antibody responses against Salmonella antigens but had no marked effect on mucosal responses. In mice immunized with X4064(pCH1A+pYL3E) significantly higher sera IgG and IgA titers for lipopolysaccharide (LPS) were found compared to mice immunized with X4064(pCH1A) and a hIL-6-negative control strain. Higher sera antibody titers were accompanied by increased numbers of IgG- and IgA-specific antibody-secreting cells in spleens and Peyer's patches, respectively. These data suggest that systemic antibody responses against Salmonella LPS are largely effected by IL-6 and, moreover, the amount and the cellular location of recombinantly expressed IL-6 appears to be crucial for enhancement of immune responses. 相似文献
IgE antibody responses against Japanese cedar pollen in the mouse were investigated to develop a mouse model of human allergy for combinations of factors including pollen administration routes, elicitation antigens and inbred mouse strains. Daily short term inhalation of native pollen or intratracheal administration of pollen suspended in saline induced IgE antibody responses in DBA/2, BDF1 and Balb/c mice, but failed to induce any detectable responses in C57BL/6 and C57BL/10 mice. Intraperitoneal injection of pollen suspension also induced IgE antibody responses in DBA/2, BDF1 and Balb/c mice but not in C57BL/6 mice. IgE antibody responses against pollen described above were detected by passive cutaneous anaphylaxis (PCA) reactions using crude extract of pollen as an elicitation antigen. On the other hand, IgE antibodies specific for antigen Sugi basic protein (AgSBP), which is a major allergen of pollen in humans (Yasueda, H., Yui, Shimizu, T., and Shida, T., 1983. Isolation and partial characterization of the major allergen from Japanese cedar (Cryptomeria japonica) pollen. J. Allergy Clin. Immunol. 71: 77-86), were also detected by PCA reactions using AgSBP in the sera from mice which received secondary or the tertiary stimulation by pollen. These results suggest that IgE antibody responses against Japanese cedar pollen in the mouse can be induced by airway sensitization and that the responses are genetically controlled by H-2-linked immune response genes. The results also suggest that not only IgE antibody responses specific for components other than AgSBP but also responses specific for AgSBP can be induced in the mouse by repeating appropriate sensitization by pollen. 相似文献
Success of alveolar reconstructions using onlay autogenous block bone grafts depends on their adequate integration to the recipient bed influenced by a number of local molecules. Considering the fundamental role of cyclooxygenase (COX-2) in bone repair, the aim of this study was to analyze the effect of its inhibition in the integration of endochondral (EC) iliac crest, and intramembranous (IM) calvaria bone grafts. Thirty-two rabbits were divided into 4 groups: Calvaria Control (CC) and Iliac Control—treated with oral 0.9 % saline solution, and Calvarial-NSAID (C-NSAID) and Iliac-NSAID (I-NSAID) groups—treated with oral 6 mg/Kg non-steroidal anti-inflammatory drug etoricoxib. After 7, 14, 30 and 60 days the animals were euthanized and the specimens removed for histological, histomorphometric and immunohistochemistry analysis. At day 60, a tight integration of IM blocks could be seen with the presence of remodeling bone, whereas integration of EC grafts was mainly observed at the edges of the grafts. A significant higher percentage of bone matrix in the interface region of the CC grafts in comparison to C-NSAID only at day 14, whereas no differences were detected comparing the EC grafts. No differences were observed in Runx-2 and vascular endothelial growth factor (VEGF) immunolabeling when comparing CC and C-NSAID groups, while a significant weaker Runx-2 and VEGF labeling was detected in I-NSAID group at day 60. Although some influence was detected in osteogenesis, it is concluded that drug induced inhibition of COX-2 does not impair onlay bone grafts’ healing of both embryologic origins in rabbits. 相似文献
A monoclonal antibody C14/1/46/10 showing preferential binding to membranes of human colorectal carcinomas over normal colon mucosae was obtained by immunization of mice with extra-nuclear membranes of a human colonic adenoma. Binding and inhibition of binding assays using blood cells or glycoproteins with known blood-group activities indicated that the antibody recognizes a carbohydrate antigen co-existing with the blood-group-H determinant: Fucα1→2Gal. Inhibition assays with structurally defined oligosaccharides showed that the antigenic determinant involves difucosylated Type-2-blood-group chains with the structure:相似文献
Exposure of the newborn lung to hyperoxia is associated with impaired alveolar development. In newborn rats exposed to hyperoxia and studied at day 14 of life, retinoic acid (RA) treatment improved survival and increased lung collagen but did not improve alveolar development. To determine whether RA treatment during exposure to hyperoxia results in late improvement in alveolarization, we treated newborn rats with RA and hyperoxia from day 3 to day 14 and then weaned O2 to room air by day 20, and studied the animals on day 42. O2-exposed animals had larger mean lung volumes, larger alveoli, and decreased gas-exchange tissue relative to air-exposed animals, whereas RA-treated O2-exposed animals were not statistically different from air-exposed controls. Relative to control animals, elastin staining at day 14 was decreased in hyperoxia-exposed lung independent of RA treatment, and, at day 42, elastin staining was similar in all treatment groups. At day 14, elastin gene expression was similar in all treatment groups, whereas at day 42 lung previously exposed to hyperoxia showed increased elastin signal independent of RA treatment. These results indicate that RA treatment during hyperoxia exposure promotes septal formation without evidence of effects on elastin gene expression after 4 wk of recovery. 相似文献
Mixed infection of porcine circovirus type 2 (PCV2) and foot-and-mouth disease virus (FMDV) is devastating to swine populations. To develop an effective vaccine that can protect the pigs from the infection of PCV2 and FMDV, we used the neutralizing B cell epitope region (aa 135–160) of FMDV to replace the regions aa 123–151 and aa 169–194 of the PCV2b Cap protein to generate a recombinant protein designated as Capfb. The Capfb protein was expressed in Escherichia coli system and the purified Capfb protein assembled into virus-like particles (VLPs) through dialysis. The ability of the Capfb protein to induce effective immune response against FMDV and PCV2b was tested in mice and guinea pigs. The results showed that the Capfb-VLPs could elicit anti-PCV2b and anti-FMDV antibody response in mice and guinea pigs without inducing antibodies against decoy epitope. Moreover, the Capfb-VLPs could enhance the percentage and activation of B cells in lymph nodes when the mice were stimulated with inactivated FMDV or PCV2b. These data suggested that the Capfb-VLPs could be an efficacious candidate antigen for developing a novel PCV2b-FMDV bivalent vaccine.