首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A bone morphogenetic protein (BMP) signaling pathway acts in the establishment of the dorsoventral axis of the vertebrate embryo. Here we demonstrate the genetic requirement for two different Bmp ligand subclass genes for dorsoventral pattern formation of the zebrafish embryo. From the relative efficiencies observed in Bmp ligand rescue experiments, conserved chromosomal synteny, and isolation of the zebrafish bmp7 gene, we determined that the strongly dorsalized snailhouse mutant phenotype is caused by a mutation in the bmp7 gene. We show that the original snailhouse allele is a hypomorphic mutation and we identify a snailhouse/bmp7 null mutant. We demonstrate that the snailhouse/bmp7 null mutant phenotype is identical to the presumptive null mutant phenotype of the strongest dorsalized zebrafish mutant swirl/bmp2b, revealing equivalent genetic roles for these two Bmp ligands. Double mutant snailhouse/bmp7; swirl/bmp2b embryos do not exhibit additional or stronger dorsalized phenotypes, indicating that these Bmp ligands do not function redundantly in early embryonic development. Furthermore, overexpression experiments reveal that Bmp2b and Bmp7 synergize in the ventralization of wild-type embryos through a cell-autonomous mechanism, suggesting that Bmp2b/Bmp7 heterodimers may act in vivo to specify ventral cell fates in the zebrafish embryo.  相似文献   

2.
Bone morphogenetic proteins (Bmps) are key regulators of dorsoventral (DV) patterning. Within the ectoderm, Bmp activity has been shown to inhibit neural development, promote epidermal differentiation and influence the specification of dorsal neurons and neural crest. In this study, we examine the patterning of neural tissue in mutant zebrafish embryos with compromised Bmp signalling activity. We find that although Bmp activity does not influence anteroposterior (AP) patterning, it does affect DV patterning at all AP levels of the neural plate. Thus, we show that Bmp activity is required for specification of cell fates around the margin of the entire neural plate, including forebrain regions that do not form neural crest. Surprisingly, we find that Bmp activity is also required for patterning neurons at all DV levels of the CNS. In swirl/bmp2b(-) (swr(-)) embryos, laterally positioned sensory neurons are absent whereas more medial interneuron populations are hugely expanded. However, in somitabun(-) (sbn(-)) embryos, which probably retain higher residual Bmp activity, it is the sensory neurons and not the interneurons that are expanded. Conversely, in severely Bmp depleted embryos, both interneurons and sensory neurons are absent and it is the most medial neurons that are expanded. These results are consistent with there being a gradient of Bmp-dependent positional information extending throughout the entire neural and non-neural ectoderm.  相似文献   

3.
4.
Bone morphogenetic proteins (Bmps) are signaling molecules that have been implicated in a variety of inductive processes. We report here that zebrafish Bmp7 is disrupted in snailhouse (snh) mutants. The allele snh(st1) is a translocation deleting the bmp7 gene, while snh(ty68) displays a Val->Gly exhange in a conserved motif of the Bmp7 prodomain. The snh(ty68) mutation is temperature-sensitive, leading to severalfold reduced activity of mutant Bmp7 at 28 degrees C and non-detectable activity at 33 degrees C. This prodomain lesion affects secretion and/or stability of secreted mature Bmp7 after processing has occurred. Both snh(st1) and snh(ty68) mutant zebrafish embryos are strongly dorsalized, indicating that bmp7 is required for the specification of ventral cell fates during early dorsoventral patterning. At higher temperature, the phenotype of snh(ty68) mutant embryos is identical to that caused by the amorphic bmp2b mutation swirl swr(ta72) and similar to that caused by the smad5 mutation somitabun sbn(dtc24). mRNA injection studies and double mutant analyses indicate that Bmp2b and Bmp7 closely cooperate and that Bmp2b/Bmp7 signaling is transduced by Smad5 and antagonized by Chordino.  相似文献   

5.
6.
We analyzed the interactions between mutations in antagonistic BMP pathway signaling components to examine the roles that the antagonists play in regulating BMP signaling activity. The dorsalized mutants swirl/bmp2b, snailhouse/bmp7, lost-a-fin/alk8, and mini fin/tolloid were each analyzed in double mutant combinations with the ventralized mutants chordino/chordin and ogon, whose molecular nature is not known. Similar to the BMP antagonist chordino, we found that the BMP ligand mutants swirl/bmp2b and snailhouse/bmp7 are also epistatic to the putative BMP pathway antagonist, ogon, excluding a class of intracellular antagonists as candidates for ogon. In ogon;mini fin double mutants, we observed a mutual suppression of the ogon and mini fin mutant phenotypes, frequently to a wild type phenotype. Thus, the Tolloid/Mini fin metalloprotease that normally cleaves and inhibits Chordin activity is dispensable, when Ogon antagonism is reduced. These results suggest that Ogon encodes a Tolloid and Chordin-independent antagonistic function. By analyzing genes whose expression is very sensitive to BMP signaling levels, we found that the absence of Ogon or Chordin antagonism did not increase the BMP activity remaining in swirl/bmp2b or hypomorphic snailhouse/bmp7 mutants. These results, together with other studies, suggest that additional molecules or mechanisms are essential in generating the presumptive gastrula BMP activity gradient that patterns the dorsal-ventral axis. Lastly we observed a striking increased penetrance of the swirl/bmp2b dominant dorsalized phenotype, when Chordin function is also absent. Loss of the BMP antagonist Chordin is expected to increase BMP signaling levels in a swirl heterozygote, but instead we observed an apparent decrease in BMP signaling levels and a loss of ventral tail tissue. As has been proposed for the fly orthologue of chordin, short gastrulation, our paradoxical results can be explained by a model whereby Chordin both antagonizes and promotes BMP activity.  相似文献   

7.
8.
9.
The Bone morphogenetic proteins (BMPs) act in many key regulatory processes during development, including dorsoventral axis specification and organ development and are part of a conserved signal pathway. Specifically, BMP7 is a vital signaling molecule for normal development in the mammalian system. The zebrafish mutant snailhouse (snh) was originally isolated as being strongly dorsalized and the mutation was determined to lie within the bmp7 gene. We report here the cloning and expression of a second bmp7 homolog, which we term bmp7b. Sequence alignments show that bmp7b is more closely related to human, mouse and non-mammalian BMP7 than is snh. We further show that bmp7b is strongly expressed in developing organ systems such as the eyes, the ears, the pronephric kidney and the gastrointestinal system.  相似文献   

10.
11.
12.
In the vertebrate central nervous system (CNS), diverse cellular types are generated in response to inductive signals provided by specialized cellular groups that act as organizing centers. The roof plate is a critical dorsal signaling center that occupies the dorsal midline of the developing CNS along its entire anterior-posterior axis. During caudal neural tube development, the roof plate produces proteins of the Bmp and Wnt families controlling proliferation, specification, migration, and axon guidance of adjacent dorsal interneurons. Although primarily investigated in the developing spinal cord, a growing number of studies indicate that roof plate-derived signals are also critical for the patterning of dorsal structures in more rostral regions of CNS including the hindbrain, diencephalon and telencephalon. In this review, we discuss recent progress towards understanding the molecular and cellular mechanisms of roof plate-dependent patterning of the dorsal CNS.  相似文献   

13.
14.
We have previously shown that the maternal effect dorsalization of zebrafish embryos from sbn(dtc24) heterozygous mothers is caused by a dominant negative mutation in Smad5, a transducer of ventralizing signaling by the bone morphogenetic proteins Bmp2b and Bmp7. Since sbn(dtc24) mutant Smad5 protein not only blocks wild-type Smad5, but also other family members like Smad1, it remained open to what extent Smad5 itself is required for dorsoventral patterning. Here, we report the identification of novelsmad5 alleles: three new isolates coming from a dominant enhancer screen, and four former isolates initially assigned to the cpt and pgy complementation groups. Overexpression analyses demonstrate that three of the new alleles, m169, fr5, and tc227, are true nulls (amorphs), whereas the initial dtc24 allele is both antimorphic and hypomorphic. We rescued m169 mutant embryos by smad5 mRNA injection. Although adult mutants are smaller than their siblings, the eggs laid by m169(-/-) females are larger than normal eggs. Embryos lacking maternal Smad5 function (Mm169(-/-) embryos) are even more strongly dorsalized thanbmp2b or bmp7 null mutants. They do not respond to injected bmp2b mRNA, indicating that Smad5 is absolutely essential for ventral development and Bmp2/7 signaling. Most importantly, Mm169(-/-) embryos display reducedbmp7 mRNA levels during blastula stages, when bmp2b and bmp7 mutants are still normal. This indicates that maternally supplied Smad5 is already required to mediate ventral specification prior to zygotic Bmp2/7 signaling to establish the initial dorsoventral asymmetry.  相似文献   

15.
In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.  相似文献   

16.
17.
18.
19.
Li D  Sun H  Deng W  Tao D  Liu Y  Ma Y 《Zoological science》2011,28(6):397-402
Bone morphogenetic protein (Bmp) signaling plays a pivotal role in dorsal-ventral (DV) patterning in vertebrate embryos. Piwi proteins are required for germline and stem cell development. Our previous study demonstrated that Zili, zebrafish Piwil2, inhibits transforming growth factor (TGF)-βsignaling by interacting with Smad4, suggesting a role for zili in Bmp signaling. In the present study, zili-MO or zili mRNA was microinjected into one-cell embryos to knock down or elevate the expression of zili to study the role of zili during early zebrafish embryogenesis. Knockdown of zili inhibited the expression of dorsal marker genes, and enhanced that of ventral marker genes. In contrast, overexpression of zili promoted expression of dorsal marker genes, while it inhibited ventral marker genes. These results suggest that zili regulates DV patterning. The influence of zili on the Bmp pathway was further explored. Knockdown of zili resulted in higher expression levels of bmp2b, and bmp4, the Bmp signaling ligands, and reduced expression of chordin (chd), noggin (nog1), and follistatin (fst), which encode BMP antagonists. Meanwhile, overexpression of zili produced opposite effects. In conclusion, our results indicate that zili regulates dorsal-ventral patterning by antagonizing Bmp signaling during early embryogenesis in zebrafish.  相似文献   

20.
In vertebrates, the embryonic dorsoventral asymmetry is regulated by the bone morphogenetic proteins (Bmp) activity gradient. In the present study, we have used dorsalized swirl (bmp2b) and ventralized chordino (chordin) zebrafish mutants to investigate the effects of dorsoventral signalling on endoderm patterning and on the differentiation and positioning of its derivatives. Alterations of dorsoventral Bmp signalling do not perturb the induction of endodermal precursors, as shown by normal amounts of cells expressing cas and sox17 in swirl and chordino gastrulae, but affect dramatically the expression pattern of her5, a regulator of endoderm anteroposterior patterning in zebrafish. In particular, increased levels of Bmp signalling in chordino gastrulae are associated with a markedly reduced her5 expression domain, that may be abolished by injecting bmp2b mRNA. Conversely, in swirl mutants, lacking Bmp2b, the her5 expression domain is expanded. Thus, a gradient of Bmp2b signalling defines the extension of the her5 expression domain at gastrulation and the allocation of anterior endodermal precursors. A balanced Bmp2b signalling is also required for the normal development of the pancreas, as shown by the sharp reduction of the pancreatic primordium in swirl embryos and its expansion in chordino mutants. In the latter, at 3 days post-fertilization, the increased Bmp signalling does not compromise the endocrine/exocrine pancreas compartmentalization, but the right/left positioning of the pancreas and liver is randomized. Our results suggest that by regulating the expression of her5, the Bmp2b/Chordin gradient directs the anteroposterior patterning of endoderm in zebrafish embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号