首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection with a replication-competent bovine leukemia virus structural gene vector (BLV SGV) is an innovative vaccination approach to prevent disease by complex retroviruses. Previously we developed BLV SGV that constitutively expresses BLV gag, pol, and env and related cis-acting sequences but lacks tax, rex, RIII, and GIV and most of the BLV long terminal repeat sequences, including the cis-acting Tax and Rex response elements. The novel SGV virus is replication competent and replicates a selectable vector to a titer similar to that of the parental BLV in cell culture. The overall goal of this study was to test the hypothesis that infection with BLV SGV is nonpathogenic in rabbits. BLV infection of rabbits by inoculation of cell-free BLV or cell-associated BLV typically causes an immunodeficiency-like syndrome and death by 1 year postinfection. We sought to evaluate whether in vivo transfection of BLV provirus recapitulates pathogenic BLV infection and to compare BLV and BLV SGV with respect to infection, immunogenicity, and clinical outcome. Three groups of rabbits were subjected to in vivo transfection with BLV, BLV SGV, or negative control DNA. The results of our 20-month study indicate that in vivo transfection of rabbits with BLV recapitulates the fatal BLV infection produced by cell-free or cell-associated BLV. The BLV-infected rabbits exhibited sudden onset of clinical decline and immunodeficiency-like symptoms that culminated in death. BLV and BLV SGV infected peripheral blood mononuclear cells and induced similar levels of seroconversion to BLV structural proteins. However, BLV SGV exhibited a reduced proviral load and did not trigger the immunodeficiency-like syndrome. These results are consistent with the hypothesis that BLV SGV is infectious and immunogenic and lacks BLV pathogenicity in rabbits, and they support the use of this modified proviral vector delivery system for vaccines against complex retroviruses like BLV.  相似文献   

2.
N Sagata  Y Ogawa  J Kawamura  M Onuma  H Izawa  Y Ikawa 《Gene》1983,26(1):1-10
The bovine leukemia virus (BLV) DNA harbored in the bovine tumor cell genome was cloned in lambda Charon 4A phage. Using either representative or 3' half-enriched BLV cDNA as a blot hybridization probe, clone lambda BLV-1 was shown to carry 9 kb of the BLV genome, flanked by cellular sequences at both ends. Restriction mapping with twelve endonucleases and hybridization of the DNA fragments to BLV cDNA representing a 3'-end portion of the viral genome revealed the presence and precise location of two long terminal repeats (LTRs) and virus-cell junctions. Thus, lambda BLV-1 appears to contain the complete BLV genome and flanking tumor cellular sequences. The restriction map of the cloned BLV proviral DNA closely resembles that previously reported for unintegrated linear proviral DNA, but differs significantly from that of the integrated provirus of another BLV isolate, the difference occurring preferentially in the putative gag and pol genes.  相似文献   

3.
Integration of bovine leukemia virus (BLV) in the genomes of infected cells was investigated in cattle with enzootic bovine leukosis (EBL) and sporadic bovine leukosis (SBL). Southern blot hybridization of BLV cDNA to Eco RI and Xba I restriction fragments of EBL tumor DNAs revealed that: 1) one to four or more copies of proviral DNA were integrated per genome; 2) the restriction pattern of the integrated proviral DNA was the same in two or three different tumors from the same animals; and 3) different patterns were observed among tumors from four different animals. These findings suggest the monoclonal origin of different tumors in an individual animal and the existence of multiple chromosomal integration sites of BLV provirus. DNAs from several SBL tumors were also analyzed with the same restriction enzymes, but with both representative and cDNA3'-enriched's of BLV RNA. No hybridization bands reactive with representative BLV cDNA could be detected, while several bands appeared to hybridize with cDNA3'-enriched.  相似文献   

4.
Bovine leukemia virus (BLV) and human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) belong to the same subfamily of oncoviruses. Defective HTLV-1 proviral genomes have been found in more than half of all patients with adult T-cell leukemia examined. We have characterized the genomic structure of integrated BLV proviruses in peripheral blood lymphocytes and tumor tissue taken from animals with lymphomas at various stages. Genomic Southern hybridization with SacI, which generates two major fragments of BLV proviral DNA, yielded only bands that corresponded to a full-size provirus in all of 23 cattle at the lymphoma stage and in 7 BLV-infected but healthy cattle. Long PCR with primers located in long terminal repeats clearly demonstrated that almost the complete provirus was retained in all of 27 cattle with lymphomas and in 19 infected but healthy cattle. However, in addition to a PCR product that corresponded to a full-size provirus, a fragment shorter than that of the complete virus was produced in only one of the 27 animals with lymphomas. Moreover, when we performed conventional PCR with a variety of primers that spanned the entire BLV genome to detect even small defects, PCR products were produced that specifically covered the entire BLV genome in all of the 40 BLV-infected cattle tested. Therefore, it appears that at least one copy of the full-length BLV proviral genome was maintained in each animal throughout the course of the disease and, in addition, that either large or small deletions of proviral genomes may be very rare events in BLV-infected cattle.  相似文献   

5.
A bovine leukemia virus (BLV)-producing cell line, fetal lamb kidney cells infected with BLV (FLK) contains one or a few copies of BLV proviral DNA in its genome. These cells contain 0.002% of viral RNA which sediments, in a sucrose gradient, at about 35S and between 18S and 28S.In cattle affected by enzootic bovine leukosis, tumor cells and circulating lymphocytes also contain one or a few copies of BLV proviral DNA integrated in their genome. However, in all cases tested (except one), no viral RNA was detected in these cells in conditions where one or two copies of viral genomic RNA per cell would have been easily detected.  相似文献   

6.
7.
8.
9.
用NestedPCR检测牛白血病病毒的前病毒形式。从牛白血病病毒基因gp51上选择两对引物进行NestedPCR体外扩增,产物经2%agarose凝胶电泳和用生物素标记的探针鉴定,证实其特异性。结果表明该方法能从两个BAT-BLV细胞内检测出BLV的前病毒DNA形式。  相似文献   

10.
11.
Partial sequence analysis of a 14 kilodalton protein (p14), synthesized by in vitro translation of bovine leukemia virus genomic RNA, showed that it is encoded in the 'X' region of proviral DNA, located between the env gene and the 3' long terminal repeat. The 'X' gene contains a short and a long open reading frame (X-SORF and X-LORF) which overlap. BLV p14x is specified by X-SORF and not X-LORF as seen with the related human T-cell leukemia virus which expresses p38-40x. Antibodies in sera from animals with BLV induced tumors were shown to recognize p14x. Expression of this protein in natural infection might be important for virus replication and/or for BLV induced oncogenesis.  相似文献   

12.
Defective proviruses of bovine leukemia virus (BLV) in the genomes of infected cells were investigated by using Southern blotting hybridization analysis with various portions of a cloned BLV DNA as probes. When nine independent tumors of enzootic bovine leukosis with a single proviral copy per cell were examined, a single defective provirus of BLV was found in one tumor and also in a bovine B cell line derived from this tumor. Hybridization analysis of this defective provirus revealed that it underwent deletion between the pol and env genes and contained no major deletion in the other regions.  相似文献   

13.
Bovine leukemia virus (BLV), an oncovirus related to human T-cell leukemia virus type I, causes a B-cell lymphoproliferative syndrome in cattle, leading to an inversion of the T-cell/B-cell ratio and, more rarely, to a B-cell lymphosarcoma. Sheep are highly sensitive to BLV experimental infection and develop B-cell pathologies similar to those in cattle in 90% of the cases. BLV tropism for B cells has been well documented, but the infection of other cell populations may also be involved in the BLV-induced lymphoproliferative syndrome. We thus looked for BLV provirus in other leukocyte populations in sheep and cattle by using PCR. We found that while B cells harbor the highest proviral load, CD8+ T cells, monocytes, and granulocytes, but not CD4+ T cells, also bear BLV provirus. As previously described, we found that persistent lymphocytosis in cows is characterized by an expansion of the CD5+ B-cell subpopulation but we did not confirm this observation in sheep in which the expanded B-cell population expressed the CD11b marker. Nevertheless, BLV could be detected both in bovine CD5+ and CD5- B cells and in sheep CD11b+ and CD11b- B cells, indicating that the restricted BLV tropism for a specific B-cell subpopulation cannot explain its expansion encountered in BLV infection. Altogether, this work shows that BLV tropism in leukocytes is wider than previously thought. These results lead the way to further studies of cellular interactions among B cells and other leukocytes that may intervene in the development of the lymphoproliferative syndrome induced by BLV infection.  相似文献   

14.
15.
16.
17.
18.
Bovine leukemia virus (BLV) is silent in most cells detectable in vivo, and the repression of its expression allows BLV to evade the host's immune response. In this study, we examined whether CpG methylation of DNA might be involved in the regulation of the expression of BLV in vivo. To investigate the effects of CpG methylation on the activity of the long terminal repeat (LTR) of BLV, we measured the transactivation activity of this region after treatment with the CpG methyltransferase SssI by using a luciferase reporter system. The activity of methylated LTR was significantly lower than that of nonmethylated LTR. Therefore, we examined the extent of CpG methylation of the U3 region and part of the R region of the LTR in BLV-infected cattle and in experimentally BLV-infected sheep at various clinical stages by the bisulfite genomic sequencing method. We detected no or minimal CpG methylation at all stages examined in cattle and sheep, and our results indicate that CpG methylation probably does not participate in the silencing of BLV in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号