首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gunge N  Nakatomi Y 《Genetics》1972,70(1):41-58
Yeast heterozygous for mating type lacks the ability to conjugate as judged by the mass-mating technique and accordingly is designated "non-mater". However, the non-mater shows rare mating ability with a frequency of less than 10-6. In the present study, the RD auxotroph mating method was mainly employed with the intention of examining the rare mating ability of various non-maters, using lactate ethanol minimal medium as a selective medium for hybridization. Crosses of x a, aα x a, aaα x a, aαα x a, etc. resulted in the production of respective hybrids with a relatively high frequency of about 10-6 to 10-7, whereas crosses of aaα x a, aαα x α, aaαα x a, aaαα x α, etc. resulted in hybrids with an extremely low frequency of about less than 10-8. Genetic analyses revealed that the rare matings were mostly caused by the presence of cells derived from the non-maters in which mating type had converted to a homozygous genotype. Mitotic recombination was shown to be a likely explanation for most of the conversion, judging from associated exchange of an outside marker, thr4. By successive employment of the RD auxotroph mating method, it was possible to produce a series of polyploid yeasts, triploids to octoploids. The DNA content and the cell volume were observed to increase parallel to the elevated ploidy states.  相似文献   

2.
Candida albicans has an elaborate, yet efficient, mating system that promotes conjugation between diploid a and α strains. The product of mating is a tetraploid a/α cell that must undergo a reductional division to return to the diploid state. Despite the presence of several “meiosis-specific” genes in the C. albicans genome, a meiotic program has not been observed. Instead, tetraploid products of mating can be induced to undergo efficient, random chromosome loss, often producing strains that are diploid, or close to diploid, in ploidy. Using SNP and comparative genome hybridization arrays we have now analyzed the genotypes of products from the C. albicans parasexual cycle. We show that the parasexual cycle generates progeny strains with shuffled combinations of the eight C. albicans chromosomes. In addition, several isolates had undergone extensive genetic recombination between homologous chromosomes, including multiple gene conversion events. Progeny strains exhibited altered colony morphologies on laboratory media, demonstrating that the parasexual cycle generates phenotypic variants of C. albicans. In several fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe, the conserved Spo11 protein is integral to meiotic recombination, where it is required for the formation of DNA double-strand breaks. We show that deletion of SPO11 prevented genetic recombination between homologous chromosomes during the C. albicans parasexual cycle. These findings suggest that at least one meiosis-specific gene has been re-programmed to mediate genetic recombination during the alternative parasexual life cycle of C. albicans. We discuss, in light of the long association of C. albicans with warm-blooded animals, the potential advantages of a parasexual cycle over a conventional sexual cycle.  相似文献   

3.
The ubiquitous environmental human pathogen Cryptococcus neoformans is traditionally considered a haploid fungus with a bipolar mating system. In nature, the α mating type is overwhelmingly predominant over a. How genetic diversity is generated and maintained by this heterothallic fungus in a largely unisexual α population is unclear. Recently it was discovered that C. neoformans can undergo same-sex mating under laboratory conditions generating both diploid intermediates and haploid recombinant progeny. Same-sex mating (α-α) also occurs in nature as evidenced by the existence of natural diploid αADα hybrids that arose by fusion between two α cells of different serotypes (A and D). How significantly this novel sexual style contributes to genetic diversity of the Cryptococcus population was unknown. In this study, ∼500 natural C. neoformans isolates were tested for ploidy and close to 8% were found to be diploid by fluorescence flow cytometry analysis. The majority of these diploids were serotype A isolates with two copies of the α MAT locus allele. Among those, several are intra-varietal allodiploid hybrids produced by fusion of two genetically distinct α cells through same-sex mating. The majority, however, are autodiploids that harbor two seemingly identical copies of the genome and arose via either endoreplication or clonal mating. The diploids identified were isolated from different geographic locations and varied genotypically and phenotypically, indicating independent non-clonal origins. The present study demonstrates that unisexual mating produces diploid isolates of C. neoformans in nature, giving rise to populations of hybrids and mixed ploidy. Our findings underscore the importance of same-sex mating in shaping the current population structure of this important human pathogenic fungus, with implications for mechanisms of selfing and inbreeding in other microbial pathogens.  相似文献   

4.
Cryptococcus neoformans is a ubiquitous human fungal pathogen that causes meningoencephalitis in predominantly immunocompromised hosts. The fungus is typically haploid, and sexual reproduction involves two individuals with opposite mating types/sexes, α and a. However, the overwhelming predominance of mating type (MAT) α over a in C. neoformans populations limits α–a mating in nature. Recently it was discovered that C. neoformans can undergo same-sex mating under laboratory conditions, especially between α isolates. Whether same-sex mating occurs in nature and contributes to the current population structure was unknown. In this study, natural αADα hybrids that arose by fusion between two α cells of different serotypes (A and D) were identified and characterized, providing definitive evidence that same-sex mating occurs naturally. A novel truncated allele of the mating-type-specific cell identity determinant SXI1α was also identified as a genetic factor likely involved in this process. In addition, laboratory-constructed αADα strains exhibited hybrid vigor both in vitro and in vivo, providing a plausible explanation for their relative abundance in nature despite the fact that AD hybrids are inefficient in meiosis/sporulation and are trapped in the diploid state. These findings provide insights on the origins, genetic mechanisms, and fitness impact of unisexual hybridization in the Cryptococcus population.  相似文献   

5.
Diploid hybrids of Saccharomyces cerevisiae and its closest relative, Saccharomyces paradoxus, are viable, but the sexual gametes they produce are not. One of several possible causes of this gamete inviability is incompatibility between genes from different species—such incompatible genes are usually called “speciation genes.” In diploid F1 hybrids, which contain a complete haploid genome from each species, the presence of compatible alleles can mask the effects of (recessive) incompatible speciation genes. But in the haploid gametes produced by F1 hybrids, recessive speciation genes may be exposed, killing the gametes and thus preventing F1 hybrids from reproducing sexually. Here I present the results of an experiment to detect incompatibilities that kill hybrid gametes. I transferred nine of the 16 S. paradoxus chromosomes individually into S. cerevisiae gametes and tested the ability of each to replace its S. cerevisiae homeolog. All nine chromosomes were compatible, producing nine viable haploid strains, each with 15 S. cerevisiae chromosomes and one S. paradoxus chromosome. Thus, none of these chromosomes contain speciation genes that were capable of killing the hybrid gametes that received them. This is a surprising result that suggests that such speciation genes do not play a major role in yeast speciation.  相似文献   

6.
Specific locus and recessive lethal mutations are induced by γ-rays with approximately first order kinetics in the zebrafish (Brachydanio rerio) with frequencies of 4 x 10-5 r-1 and 4 x 10-3 r-1, respectively. The surprisingly low ratio (100:1) of recessive lethals to specific locus mutations may be due to the induction of large deficiencies by γ-rays.  相似文献   

7.
Acetylcholine is the major excitatory neurotransmitter in the central nervous system of insects. Mutant analysis of the Dα7 nicotinic acetylcholine receptor (nAChR) ofDrosophila shows that it is required for the giant fiber-mediated escape behavior. The Dα7 protein is enriched in the dendrites of the giant fiber, and electrophysiological analysis of the giant fiber circuit showed that sensory input to the giant fiber is disrupted, as is transmission at an identified cholinergic synapse between the peripherally synapsing interneuron and the dorsal lateral muscle motor neuron. Moreover, we found thatgfA1, a mutation identified in a screen for giant fiber defects more than twenty years ago, is an allele ofDα7. Therefore, a combination of behavioral, electrophysiological, anatomical, and genetic data indicate an essential role for the Dα7 nAChR in giant fiber-mediated escape inDrosophila.  相似文献   

8.
The mutation rates of specific loci and chromosome regions were estimated for two types of dysgenic hybrid males. These came from crosses between P or Q males and M females in the P-M system of hybrid dysgenesis. The M x P hybrids were the more mutable for each of the loci and chromosome regions tested. The Beadex locus was highly mutable in these hybrids but did not mutate at all in the sample of gametes from the M x Q hybrids. The singed locus had 75% of the mutability of Beadex in the M x P hybrids; it was also mutable in the M x Q hybrids. The white locus was only slightly mutable in the M x P hybrids and not at all mutable in the M x Q hybrids. The mutations in singed and white probably arose from the insertion of P elements into these loci; the mutations at Beadex probably involved the action of a P element located near this locus on the X chromosome of the P strain that was used in the experiments. Mutations in two chromosome regions, one including the zeste-white loci and the other near the miniature locus, were much more frequent in the M x P hybrids than in the M x Q hybrids. These mutations also probably arose from P element insertions. The implication is that insertion mutations occur infrequently in the M x Q hybrids, possibly because most of the P elements they carry are defective. In M x P hybrids, there is variation among loci with respect to P elements mutagenesis, indicating that P elements possess a degree of insertional specificity.  相似文献   

9.
Geographic partitioning is postulated to foster divergence of Helicobacter pylori populations as an adaptive response to local differences in predominant host physiology. H. pylori's ability to establish persistent infection despite host inflammatory responses likely involves active management of host defenses using bacterial proteins that may themselves be targets for adaptive evolution. Sequenced H. pylori genomes encode a family of eight or nine secreted proteins containing repeat motifs that are characteristic of the eukaryotic Sel1 regulatory protein, whereas the related Campylobacter and Wolinella genomes each contain only one or two such “Sel1-like repeat” (SLR) genes (“slr genes”). Signatures of positive selection (ratio of nonsynonymous to synonymous mutations, dN/dS = ω > 1) were evident in the evolutionary history of H. pylori slr gene family expansion. Sequence analysis of six of these slr genes (hp0160, hp0211, hp0235, hp0519, hp0628, and hp1117) from representative East Asian, European, and African H. pylori strains revealed that all but hp0628 had undergone positive selection, with different amino acids often selected in different regions. Most striking was a divergence of Japanese and Korean alleles of hp0519, with Japanese alleles having undergone particularly strong positive selection (ωJ > 25), whereas alleles of other genes from these populations were intermingled. Homology-based structural modeling localized most residues under positive selection to SLR protein surfaces. Rapid evolution of certain slr genes in specific H. pylori lineages suggests a model of adaptive change driven by selection for fine-tuning of host responses, and facilitated by geographic isolation. Characterization of such local adaptations should help elucidate how H. pylori manages persistent infection, and potentially lead to interventions tailored to diverse human populations.  相似文献   

10.
Despite its morphological similarity to the other species in the Drosophila melanogaster species complex, D. sechellia has evolved distinct physiological and behavioral adaptations to its host plant Morinda citrifolia, commonly known as Tahitian Noni. The odor of the ripe fruit of M. citrifolia originates from hexanoic and octanoic acid. D. sechellia is attracted to these two fatty acids, whereas the other species in the complex are repelled. Here, using interspecies hybrids between D. melanogaster deficiency mutants and D. sechellia, we showed that the Odorant-binding protein 57e (Obp57e) gene is involved in the behavioral difference between the species. D. melanogaster knock-out flies for Obp57e and Obp57d showed altered behavioral responses to hexanoic acid and octanoic acid. Furthermore, the introduction of Obp57d and Obp57e from D. simulans and D. sechellia shifted the oviposition site preference of D. melanogaster Obp57d/eKO flies to that of the original species, confirming the contribution of these genes to D. sechellia's specialization to M. citrifolia. Our finding of the genes involved in host-plant determination may lead to further understanding of mechanisms underlying taste perception, evolution of plant–herbivore interactions, and speciation.  相似文献   

11.
Hasenkampf CA  Menzel MY 《Genetics》1980,95(4):971-983
Eight homozygous translocation lines (TT) of G. hirsutum marking 3 chromosomes of the A genome and 9 chromosomes of the D genome were crossed with G. hirsutum, G. mustelinum and G. tomentosum, all homozygous for the standard end arrangements (tt). Chiasma frequencies in the G. hirsutum Tt controls were compared with those in the G. hirsutum x G. mustelinum and the G. hirsutum x G. tomentosum Tt hybrids. Both nucleus-wide and region-specific chiasma frequencies were compared.—Some genome differentiation appears to have arisen between G. hirsutum and G. mustelinum. The G. hirsutum x G. mustelinum hybrids had a 1.8 to 1.9% reduction in the nucleus-wide chiasma frequency. Four of the eight TT lines showed a 3.4 to 10.5% reduction in chiasmata in the hybrid translocation quadrivalents, suggesting that chromosomes 1, 21, 23 and 24 may have undergone localized genome differentiation. The two species may differ naturally in the end arrangement of two chromosomes, since a quadrivalent not due to experimentally introduced translocations was observed in 13% of the PMC's of two G. hirsutum x G. mustelinum hybrids.—Very little genome differentiation has occurred between G. hirsutum and G. tomentosum. In the G. hirsutum x G. tomentosum hybrids, the nucleus-wide estimates showed only a very small (0.1 to 0.2%), though statistically significant, lowering of the chiasma frequency, and there was no reduction in chiasma frequency in the more sensitive readings for specific translocation quadrivalents.  相似文献   

12.
Loren C. Skow 《Genetics》1978,90(4):713-724
Electrophoretic and activity variants for a testosterone-induced esteroprotease have been discovered in submaxillary glands from inbred strains of mice. The enzyme is tentatively designated tamase (TAM-1) and the variant genetic locus is Tam-1. The alleles Tam-1a and Tam-1b determine electrophoretically distinct zones of tamase activity, while Tam-1c produces no detectable enzyme activity. Data from recombinant inbred strains and B6AF1 x B6 and B6D2F1 x B6 backcrosses established linkage of Tam-1 to glucose phosphate isomerase (Gpi-1), pink-eyed dilution (p) and β-hemoglobin (Hbb) on chromosome 7. The gene order is Gpi-1—Tam-1—p—Hbb. Analysis of congenic resistant strains indicates that Tam-1 is closely linked to the minor histocompatibility locus, H-4. TAM-1 was not cross-reactive with antisera to mouse nerve growth factor, submaxillary renin, or tamases A and D.  相似文献   

13.
Reinforcement refers to the evolution of increased mating discrimination against heterospecific individuals in zones of geographic overlap and can be considered a final stage in the speciation process. One the factors that may affect reinforcement is the degree to which hybrid matings result in the permanent loss of genes from a species' gene pool. Matings between females of Drosophila subquinaria and males of D. recens result in high levels of offspring mortality, due to interspecific cytoplasmic incompatibility caused by Wolbachia infection of D. recens. Such hybrid inviability is not manifested in matings between D. recens females and D. subquinaria males. Here we ask whether the asymmetrical hybrid inviability is associated with a corresponding asymmetry in the level of reinforcement. The geographic ranges of D. recens and D. subquinaria were found to overlap across a broad belt of boreal forest in central Canada. Females of D. subquinaria from the zone of sympatry exhibit much stronger levels of discrimination against males of D. recens than do females from allopatric populations. In contrast, such reproductive character displacement is not evident in D. recens, consistent with the expected effects of unidirectional cytoplasmic incompatibility. Furthermore, there is substantial behavioral isolation within D. subquinaria, because females from populations sympatric with D. recens discriminate against allopatric conspecific males, whereas females from populations allopatric with D. recens show no discrimination against any conspecific males. Patterns of general genetic differentiation among populations are not consistent with patterns of behavioral discrimination, which suggests that the behavioral isolation within D. subquinaria results from selection against mating with Wolbachia-infected D. recens. Interspecific cytoplasmic incompatibility may contribute not only to post-mating isolation, an effect already widely recognized, but also to reinforcement, particularly in the uninfected species. The resulting reproductive character displacement not only increases behavioral isolation from the Wolbachia-infected species, but may also lead to behavioral isolation between populations of the uninfected species. Given the widespread occurrence of Wolbachia among insects, it thus appears that there are multiple ways by which these endosymbionts may directly and indirectly contribute to reproductive isolation and speciation.  相似文献   

14.
Detailed studies of individual genes have shown that gene expression divergence often results from adaptive evolution of regulatory sequence. Genome-wide analyses, however, have yet to unite patterns of gene expression with polymorphism and divergence to infer population genetic mechanisms underlying expression evolution. Here, we combined genomic expression data—analyzed in a phylogenetic context—with whole genome light-shotgun sequence data from six Drosophila simulans lines and reference sequences from D. melanogaster and D. yakuba. These data allowed us to use molecular population genetics to test for neutral versus adaptive gene expression divergence on a genomic scale. We identified recent and recurrent adaptive evolution along the D. simulans lineage by contrasting sequence polymorphism within D. simulans to divergence from D. melanogaster and D. yakuba. Genes that evolved higher levels of expression in D. simulans have experienced adaptive evolution of the associated 3′ flanking and amino acid sequence. Concomitantly, these genes are also decelerating in their rates of protein evolution, which is in agreement with the finding that highly expressed genes evolve slowly. Interestingly, adaptive evolution in 5′ cis-regulatory regions did not correspond strongly with expression evolution. Our results provide a genomic view of the intimate link between selection acting on a phenotype and associated genic evolution.  相似文献   

15.
Cryptococcus neoformans is a human fungal pathogen that undergoes a dimorphic transition from yeast to hyphae during a-α opposite-sex mating and α-α unisexual reproduction (same-sex mating). Infectious spores are generated during both processes. We previously identified a sex-induced silencing (SIS) pathway in the C. neoformans serotype A var. grubii lineage, in which tandem transgene arrays trigger RNAi-dependent gene silencing at a high frequency during a-α opposite-sex mating, but at an ∼250-fold lower frequency during asexual mitotic vegetative growth. Here we report that SIS also operates during α-α unisexual reproduction. A self-fertile strain containing either SXI2a-URA5 or NEO-URA5 transgene arrays exhibited an elevated silencing frequency during solo and unisexual mating compared with mitotic vegetative growth. We also found that SIS operates at a similar efficiency on transgene arrays of the same copy number during either α-α unisexual reproduction or a-α opposite-sex mating. URA5-derived small RNAs were detected in the silenced progeny of α-α unisexual reproduction and RNAi core components were required, providing evidence that SIS induced by same-sex mating is also mediated by RNAi via sequence-specific small RNAs. In addition, our data show that the SIS RNAi pathway also operates to defend the genome via squelching transposon activity during same-sex mating as it does during opposite-sex mating. Taken together, our results confirm that SIS is conserved between the divergent C. neoformans serotype A and serotype D cryptic sibling species.  相似文献   

16.
Crandall M  Caulton JH 《Genetics》1979,93(4):903-916
Diploids of the yeast Hansenula wingei are nonagglutinative and do not form zygotes in mixed cultures with either sexually agglutinative haploid mating type. However, a low frequency of diploid x haploid cell fusions (about 10-3) is detectable by prototrophic selection. This frequency of rare diploid x haploid matings is not increased after the diploid culture is induced for sexual agglutination. Therefore, we conclude that genes that repress mating are different from those that repress sexual agglutination.——Six prototrophs isolated from one diploid x haploid cross had an average DNA value (µg DNA per 108 cells) of 6.19, compared to 2.53 and 4.35 for the haploid and diploid strains, respectively. Four prototrophs were clearly cell-fusion products because they contained genes from both the diploid and the haploid partners. However, genetic analysis of the prototrophs yielded results inconsistent with triploid meiosis; all six isolates yielded a 2:2 segregation for the mating-type alleles and linked genes.——Mitotic segregation of monosomic (2n-1) cells lacking one homolog of the chromosome carrying the mating-type locus is proposed to explain the rare production of sexually active cells in the diploid cultures. Fusion between such monosomic cells and normal haploids is thought to have produced 3n-1 cells, disomic for the chromosome carrying the mating-type locus. We conclude that in the diploid strain we studied, the physiological mechanisms repressing sexual agglutination and conjugation function efficiently, but events occuring during mitosis lead to a low frequency of genetically altered cells in the population.  相似文献   

17.
The sexual development and virulence of the fungal pathogen Cryptococcus neoformans is controlled by a bipolar mating system determined by a single locus that exists in two alleles, α and a. The α and a mating-type alleles from two divergent varieties were cloned and sequenced. The C. neoformans mating-type locus is unique, spans >100 kb, and contains more than 20 genes. MAT-encoded products include homologs of regulators of sexual development in other fungi, pheromone and pheromone receptors, divergent components of a MAP kinase cascade, and other proteins with no obvious function in mating. The α and a alleles of the mating-type locus have extensively rearranged during evolution and strain divergence but are stable during genetic crosses and in the population. The C. neoformans mating-type locus is strikingly different from the other known fungal mating-type loci, sharing features with the self-incompatibility systems and sex chromosomes of algae, plants, and animals. Our study establishes a new paradigm for mating-type loci in fungi with implications for the evolution of cell identity and self/nonself recognition.  相似文献   

18.
The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.  相似文献   

19.
Schnee FB  Thompson JN 《Genetics》1984,108(2):409-424
The chromosomal architecture of genotype x environment interactions was investigated in lines of Drosophila melanogaster selected for increased or decreased sternopleural bristle number at 18°, 25° and 29°. In general, interactions were found to have a stabilizing effect upon the bristle phenotype, in the sense that the genotype x environment interaction tended to increase bristle number under conditions in which temperature alone reduced bristle number and vice versa. The polygenic modifiers of mean bristle number were often separable from modifiers of the response to temperature both at the chromosomal level and intrachromosomally. In one of the low selection lines, a temperature-dependent polygenic locus was mapped on chromosome 3. It is suggested that genotype x environment interactions be thought of in terms of conditional polygenic expression. Such conditionality may be one of the ways in which polygenic variation is maintained in a population in the face of selection for an optimum phenotype.  相似文献   

20.
Whether in natural populations or between two unrelated members of a species, most phenotypic variation is quantitative. To analyze such quantitative traits, one must first map the underlying quantitative trait loci. Next, and far more difficult, one must identify the quantitative trait genes (QTGs), characterize QTG interactions, and identify the phenotypically relevant polymorphisms to determine how QTGs contribute to phenotype. In this work, we analyzed three Saccharomyces cerevisiae high-temperature growth (Htg) QTGs (MKT1, END3, and RHO2). We observed a high level of genetic interactions among QTGs and strain background. Interestingly, while the MKT1 and END3 coding polymorphisms contribute to phenotype, it is the RHO2 3′UTR polymorphisms that are phenotypically relevant. Reciprocal hemizygosity analysis of the Htg QTGs in hybrids between S288c and ten unrelated S. cerevisiae strains reveals that the contributions of the Htg QTGs are not conserved in nine other hybrids, which has implications for QTG identification by marker-trait association. Our findings demonstrate the variety and complexity of QTG contributions to phenotype, the impact of genetic background, and the value of quantitative genetic studies in S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号