首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intact mesophyll and bundle sheath chloroplasts wee isolated from the NADP-malic enzyme type C4 plants maize, sorghum (monocots), and Flaveria trinervia (dicot) using enzymic digestion and mechanical isolation techniques. Bundle sheath chloroplasts of this C4 subgroup tend to be agranal and were previously reported to be deficient in photosystem II activity. However, following injection of intact bundle sheath chloroplasts into hypotonic medium, thylakoids had high Hill reaction activity, similar to that of mesophyll chloroplasts with the Hill oxidants dichlorophenolindophenol, p-benzoquinone, and ferricyanide (approximately 200 to 300 micromoles O2 evolved per mg chlorophyll per hour). In comparison to that of mesophyll chloroplasts, the Hill reaction activity of bundle sheath chloroplasts of maize and sorghum was labile and lost activity during assay. Bundle sheath chloroplasts of maize also exhibited some capacity for 3-phosphoglycerate dependent O2 evolution (29 to 58 micromoles O2 evolved per milligram chlorophyll per hour). Both the mesophyll and bundle sheath chloroplasts were equally effective in light dependent scavenging of hydrogen peroxide. The results suggest that both chloroplast types have noncyclic electron transport and the enzymology to reduce hydrogen peroxide to water. The activities of ascorbate peroxidase from these chloroplast types was consistent with their capacity to scavenge hydrogen peroxide.  相似文献   

2.
Several photochemical and spectral properties of maize (Zea mays) bundle sheath and mesophyll chloroplasts are reported that provide a better understanding of the photosynthetic apparatus of C4 plants. The difference absorption spectrum at 298 K and the fluorescence excitation and emission spectra of chlorophyll at 298 K and 77 K provide new information on the different forms of chlorophyll a in bundle sheath and mesophyll chloroplasts: the former contain, relative to short wavelength chlorophyll a forms, more long wavelength chlorophyll a form (e.g. chlorophyll a 693 and chlorophyll a 705) and less chlorophyll b than the latter. The degree of polarization of chlorophyll a fluorescence is 6% in bundle sheath and 4% in mesophyll chloroplasts. This result is consistent with the presence of relatively high amounts of oriented long wavelength forms of chlorophyll a in bundle sheath compared to mesophyll chloroplasts. The relative yield of variable, with respect to constant, chorophyll a fluorescence in mesophyll chloroplasts is more than twice that in bundle sheath chloroplast. Furthermore, the relative yield of total chlorophyll a fluorescence is 40% lower in bundle sheath compared to that in mesophyll chloroplasts. This is in agreement with the presence of the higher ratio of the weakly fluorescent pigment system I to pigment system II in bundle sheath than in mesophyll chloroplast. The efficiency of energy transfer from chlorophyll b and carotenoids to chlorophyll a are calculated to be 100 and 50%, respectively, in both types of chloroplasts. Fluorescence quenching of atebrin, reflecting high energy state of chloroplasts, is 10 times higher in mesophyll chloroplasts than in bundle sheath chloroplasts during noncyclic electron flow but is equal during cyclic flow. The entire electron transport chain is shown to be present in both types of chloroplasts, as inferred from the antagonistic effect of red (650 nm) and far red (710 nm) lights on the absorbance changes at 559 nm and 553 nm, and the photoreduction of methyl viologen from H2O. (The rate of methyl viologen photoreduction in bundle sheath chloroplasts was 40% of that of mesophyll chloroplasts.)  相似文献   

3.
Changes in lipid composition were followed as a proplastid develops into a chloroplast. Methods were devised for the isolation of developing proplastids from sections of five different ages from the same 7-day-old maize (Zea mays var. Kelvedon Glory) leaf. Electron micrographs illustrate the homogeneity of the five types of plastid suspension, minimal contamination with other cytoplasmic membranes, and the presence of morphologically intact plastids in the proportions 85% (youngest), 85%, 80%, 70% and 60% (oldest), respectively. Both bundle sheath and mesophyll plastids are well preserved in isolation. Plastid numbers were determined from calibration curves of the chlorophyll content of each type of suspension, and lipid values then expressed as nmoles/106 plastids. Monogalactosyl diglyceride (MGDG), digalactosyl diglyceride (DGDG), sulfoquinovosyl diglyceride, and phosphatidyl glycerol (PG) all increase during plastid development but the rate of increase is different for each lipid. The largest changes are in MGDG (6-fold) and DGDG (4-fold). Phosphatidyl choline shows a continuous decline during plastid development. Phosphatidyl inositol and phosphatidyl ethanolamine were found in all the suspensions in low concentrations (0.4-4.0% of total lipid): calculations showed their presence could not be accounted for by bacterial or mitochondrial contamination. The increase in PG parallels the chlorophyll changes during development and at maturity 1 molecule of PG is present per 3 molecules of chlorophyll. The results are discussed in the context of the molecular structure of the photosynthetic thylakoid membranes.  相似文献   

4.
Distribution of the major light-harvesting chlorophyll a/b-protein (LHCII) and its mRNA within bundle sheath and mesophyll cells of maize (Zea mays L.) was studied using in situ immunolocalization and hybridization, respectively. In situ hybridization with specific LHCII RNA probes from maize and Lemna gibba definitively shows the presence of high levels of mRNA for LHCII in both bundle sheath cells and mesophyll cells. In situ immuno-localization studies, using an LHCII monoclonal antibody, demonstrate the presence of LHCII polypeptides in chloroplasts of both cell types. The polypeptide composition of LHCII and the amount of LHCII in bundle sheath cells are different from those in mesophyll cells. Both mesophyll and bundle sheath chloroplasts can take up, import and process the in vitro transcribed and translated LHCII precursor protein from L. gibba. Although bundle sheath chloroplasts incorporate LHCII into the pigmented light-harvesting complex, the efficiency is lower than that in mesophyll chloroplasts.  相似文献   

5.
A modified fluorescence microscope system was used to measure chlorophyll fluorescence and delayed light emission from mesophyll and bundle sheath cells in situ in fresh-cut sections from leaves of Panicum miliaceum L. The fluorescence rise in 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU)-treated leaves and the slow fluorescence kinetics in untreated leaves show that mesophyll chloroplasts have larger photosystem II unit sizes than do bundle sheath chloroplasts. The larger photosystem II units imply more efficient noncyclic electron transport in mesophyll chloroplasts. Quenching of slow fluorescence also differs between the cell types with mesophyll chloroplasts showing complex kinetics and bundle sheath chloroplasts showing a relatively simple decline. Properties of the photosynthetic system were also investigated in leaves from plants grown in soil containing elevated NaCl levels. As judged by changes in both fluorescence kinetics in DCMU-treated leaves and delayed light emission in leaves not exposed to DCMU, salinity altered photosystem II in bundle sheath cells but not in mesophyll cells. This result may indicate different ionic distributions in the two cell types or, alternatively, different responses of the two chloroplast types to environmental change.  相似文献   

6.
7.
Lipid peroxidation and the degradation of cytochrome P-450 heme   总被引:8,自引:0,他引:8  
The enzyme content and functional capacities of mesophyll chloroplasts from Atriplex spongiosa and maize have been investigated. Accompanying evidence from graded sequential blending of leaves confirmed that mesophyll cells contain all of the leaf pyruvate, Pi dikinase, and PEP carboxylase activities and a major part of the adenylate kinase and pyrophosphatase. 3-Phosphoglycerate kinase, NADP glyceraldehyde-3-P-dehydrogenase, and triose-P isomerase activities were about equally distributed between mesophyll and bundle sheath cells but other Calvin cycle enzymes were very largely or solely located in bundle sheath cells. In A. spongiosa extracts of predominantly mesophyll origin the proportion of the released pyruvate, Pi dikinase, adenylate kinase, pyrophosphatase, 3-phosphoglycerate kinase, and NADP glyceraldehyde-3-P dehydrogenase retained in pelleted chloroplasts was similar but varied between 30 and 80% in different preparations. The proportion of these enzymes and NADP malate dehydrogenase recovered in maize chloroplast preparations varied between 15 and 35%. Washed chloroplasts retained most of the activity of these enzymes but ribulose diphosphate carboxylase and other Calvin cycle enzyme activities were undetectable. Among the evidence for the integrity of these chloroplasts was their capacity for light-dependent conversion of pyruvate to phosphoenolpyruvate and O2 evolution when 3-phosphoglycerate or oxaloacetate were added. These results support our previous conclusions about the function of mesophyll chloroplasts in C4-pathway photosynthesis and clearly demonstrate that they lack Calvin cycle activity.  相似文献   

8.
The organization of the electron transport components in mesophyll and bundle sheath chloroplasts of Zea mays was investigated. Grana-containing mesophyll chloroplasts (chlorophyll a to chlorophyll b ratio of about 3.0) possessed the full complement of the various electron transport components, comparable to chloroplasts from C3 plants. Agranal bundle sheath chloroplasts (Chl aChl b > 5.0) contained the full complement of photosystem (PS) I and of cytochrome (cyt) f but lacked a major portion of PS II and its associated Chl ab light-harvesting complex (LHC), and most of the cyt b559. The kinetic analysis of system I photoactivity revealed that the functional photosynthetic unit size of PS I was unchanged and identical in mesophyll and bundle sheath chloroplasts. The results suggest that PS I is contained in stroma-exposed thylakoids and that it does not receive excitation energy from the Chl ab LHC present in the grana. A stoichiometric parity between PS I and cyt f in mesophyll and bundle sheath chloroplasts indicates that biosynthetic and functional properties of cyt f and P700 are closely coordinated. Thus, it is likely that both cyt f and P700 are located in the membrane of the intergrana thylakoids only. The kinetic analysis of PS II photoactivity revealed the absence of PS IIαfrom the bundle sheath chloroplasts and helped identify the small complement of system II in bundle sheath chloroplasts as PS IIβ. The distribution of the main electron transport components in grana and stroma thylakoids is presented in a model of the higher plant chloroplast membrane system.  相似文献   

9.
Anna Drozak  El?bieta Romanowska 《BBA》2006,1757(11):1539-1546
The regulation by light of the photosynthetic apparatus, and composition of light-harvesting complexes in mesophyll and bundle sheath chloroplasts was investigated in maize. Leaf chlorophyll content, level of plastoquinone, PSI and PSII activities and Lhc polypeptide compositions were determined in plants grown under high, moderate and low irradiances. Photochemical efficiency of PSII, photochemical fluorescence quenching and non-photochemical fluorescence quenching over a range of actinic irradiances were also determined, using chlorophyll a fluorescence analysis. Acclimation of plants to different light conditions caused marked changes in light-harvesting complexes, LHCI and LHCII, and antenna complexes were also reorganized in these types of chloroplasts. The level of LHCII increased in plants grown in low light, even in agranal bundle sheath chloroplasts where the amount of PSII was strongly reduced. Irradiance also affected LHCI complex and the number of structural polypeptides, in this complex, generally decreased in chloroplasts from plants grown under lower light. Surprisingly moderate and low irradiances during growth do not affect the light reaction and fluorescence parameters of plants but generated differences in composition of light-harvesting complexes in chloroplasts. On the other hand, the changes in photosynthetic apparatus in plants acclimated to high light, resulted in a higher efficiency of photosynthesis. Based on these observations we propose that light acclimation to high light in maize is tightly coordinated adjustment of light reaction components/activity in both mesophyll and bundle sheath chloroplasts. Acclimation is concerned with balancing light utilization and level of the content of LHC complexes differently in both types of chloroplasts.  相似文献   

10.
Kanai R  Edwards GE 《Plant physiology》1973,51(6):1133-1137
Mesophyll protoplasts and bundle sheath strands of maize (Zea mays L.) leaves have been isolated by enzymatic digestion with cellulase. Mesophyll protoplasts, enzymatically released from maize leaf segments, were further purified by use of a polyethylene glycol-dextran liquid-liquid two phase system. Bundle sheath strands released from the leaf segments were isolated using filtration techniques. Light and electron microscopy show separation of the mesophyll cell protoplasts from bundle sheath strands. Two varieties of maize isolated mesophyll protoplasts had chlorophyll a/b ratios of 3.1 and 3.3, whereas isolated bundle sheath strands had chlorophyll a/b ratios of 6.2 and 6.6. Based on the chlorophyll a/b ratios in mesophyll protoplasts, bundle sheath cells, and whole leaf extracts, approximately 60% of the chlorophyll in the maize leaves would be in mesophyll cells and 40% in bundle sheath cells. The purity of the preparations was also evident from the exclusive localization of phosphopyruvate carboxylase (EC 4.1.1.31) and NADP-dependent malate dehydrogenase (EC 1.1.1) in mesophyll cells and ribulose 1,5-diphosphate carboxylase (EC 4.1.1.39), phosphoribulokinase (EC 2.7.1.19), and “malic enzyme” (EC 1.1.1.40) in bundle sheath cells. NADP-glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.13) was found in both mesophyll and bundle sheath cells, while ribose 5-phosphate isomerase (EC 5.3.1.6) was primarily found in bundle sheath cells. In comparison to the enzyme activities in the whole leaf extract, there was about 90% recovery of the mesophyll enzymes and 65% recovery of the bundle sheath enzymes in the cellular preparations.  相似文献   

11.
Photo-, mixo- and heterotrophically grown cultures of Chlamydomonas reinhardi (wild type ss and 2 streptomycin-resistant mutants sr3 and sr35) have been analyzed for lipids and fatty acids. Ether-soluble lipids, chlorophyll, monogalactosyl diglyceride, digalactosyl diglyceride, sulfolipid, phosphatidyl ethanolamine, phosphatidyl choline, phosphatidyl glycerol and the relative amounts of fatty acids in total and individual lipids have been determined. The lipid and fatty acid compositions are very similar in the 3 strains and are not affected by the mutations. Fatty acids belong exclusively to the C16 and C18 series, 16:0, 16:4, 18:1, 18:2, 18:3 (6,9,12) and 18:3 (9,12,15) comprising about 90% of the total. 18:3 (6,9,12) is concentrated in phosphatidyl ethanolamine. In streptomycin-bleached sr3 cells, ether-soluble lipids increase from 7 to 11% of dry weight on greening, mostly due to synthesis of monogalactosyl diglyceride and chlorophyll. Monogalactosyl diglyceride of bleached cells exhibits the same fatty acid pattern before and after greening.  相似文献   

12.
Light microscopic examination of leaf cross-sections showed that Flaveria brownii A. M. Powell exhibits Kranz anatomy, in which distinct, chloroplast-containing bundle sheath cells are surrounded by two types of mesophyll cells. Smaller mesophyll cells containing many chloroplasts are arranged around the bundle sheath cells. Larger, spongy mesophyll cells, having fewer chloroplasts, are located between the smaller mesophyll cells and the epidermis. F. brownii has very low CO2 compensation points at different O2 levels, which is typical of C4 plants, yet it does show about 4% inhibition of net photosynthesis by 21% O2 at 30°C. Protoplasts of the three photosynthetic leaf cell types were isolated according to relative differences in their buoyant densities. On a chlorophyll basis, the activities of phosphoenolpyruvate carboxylase and pyruvate, Pi dikinase (carboxylation phase of C4 pathway) were highest in the larger mesophyll protoplasts, intermediate in the smaller mesophyll protoplasts, and lowest, but still present, in the bundle sheath protoplasts. In contrast, activities of ribulose 1,5-bisphosphate carboxylase, other C3 cycle enzymes, and NADP-malic enzyme showed a reverse gradation, although there were significant activities of these enzymes in mesophyll cells. As indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the banding pattern of certain polypeptides of the total soluble proteins from the three cell types also supported the distribution pattern obtained by activity assays of these enzymes. Analysis of initial 14C products in whole leaves and extrapolation of pulse-labeling curves to zero time indicated that about 80% of the CO2 is fixed into C4 acids (malate and aspartate), whereas about 20% of the CO2 directly enters the C3 cycle. This is consistent with the high activity of enzymes for CO2 fixation by the C4 pathway and the substantial activity of enzymes of the C3 cycle in the mesophyll cells. Therefore, F. brownii appears to have some capacity for C3 photosynthesis in the mesophyll cells and should be considered a C4-like species.  相似文献   

13.
The genetic locus for the high chlorophyll fluorescent photosystem II-deficient maize mutant hcf*-3 has been definitively located to the nuclear genome. Fluorography of lamellar polypeptides labeled with [35S]methionine in vivo revealed the specific loss of a heavily labeled 32,000 dalton thylakoid membrane polypeptide as well as its chloroplast encoded precursor species at 34,000 daltons. Examination of freeze-fractured mesophyll and bundle sheath thylakoids from hcf*-3 revealed that both plastid types lacked the large EFs particles believed to consist of the photosystem II reaction center-core complex and associated light harvesting chlorophyll-proteins. The present evidence suggests that the synthesis or turnover/integration of the chloroplast-encoded 34,000 to 32,000 dalton polypeptide is under nuclear control, and that these polyipeptides are integral components of photosystem II which may be required for the assembly or structural stabilization of newly formed photosystem II reaction centers in both mesophyll and bundle sheath chloroplasts.  相似文献   

14.
A procedure is described for isolating and purifying mesophyll protoplasts and bundle sheath protoplasts of the C4 plant Panicum miliaceum. Following enzymic digestion of leaf tissue, mesophyll protoplasts and bundle sheath protoplasts are released and purified by density centrifugation. The lower density of mesophyll protoplasts allowed rapid separation of the two protoplast types. Evidence for separation of mesophyll protoplasts and bundle sheath protoplasts (up to 95% purity) is provided from light microscopy (based on size difference in both chloroplasts and protoplasts), levels of marker enzymes in the preparations (i.e. pyruvate, Pi dikinase and phosphoenolpyruvate carboxylase for mesophyll and ribulose-1,5-bisphosphate carboxylase for bundle sheath), and differences in substrate-dependent O2 evolution by chloroplasts isolated from protoplasts.  相似文献   

15.
The difference spectroscopy technique has been utilized to investigate the temperature-induced spectral changes in mesophyll and bundle sheath chloroplasts of maize ( Zea mays L. cv. Ganga-5) in order to assess the role of different pigment-protein complexes in the manifestation of temperature effect on the chloroplast membranes. Cooling and heating of both mesophyll and bundle sheath chloroplasts resulted in absorbance difference (AA) bands at similar wavelengths but the degree of absorb-ance changes were significantly higher in bundle sheath chloroplasts. For example, upon cooling to 7-8°C, positive AA bands were observed at 440, 490 and 680 nm in mesophyll chloroplasts and at 440, 495–500 and 680 nm in bundle sheath chloroplasts but the absorbance change at 680 nm was ca 2% in mesophyll chloroplasts, whereas it was ca 5% in bundle sheath chloroplasts, which have a lower content of light-harvesting pigment-protein complex. The role of chlorophyll-protein complexes was further investigated by monitoring the temperature-induced spectral changes of mesophyll and bundle sheath chloroplasts isolated from lincomycin-treated maize plants where lincomycin selectively inhibits the biosynthesis of specific chlorophyll-protein complexes. Results indicated that depletion of certain pigment-protein complexes in mesophyll chloroplasts made them more susceptible (a ca 4% vs ca 2% absorbance change upon cooling and a ca 6% vs ca 4% absorbance change upon heating) and less tolerant to temperature variation (a 76% vs 39% reversibility during ambient→Cooling→ambient temperature cycle). The data indicate that pigment-protein complexes play a significant role in protecting the chloroplast membranes against temperature variation.  相似文献   

16.
Mesophyll cells and bundle sheath strands were isolated rapidly from leaves of the C4 species Digitaria pentzii Stent. (slenderstem digitgrass) by a chopping and differential filtration technique. Rates of CO2 fixation in the light by mesophyll and bundle sheath cells without added exogenous substrates were 6.3 and 54.2 micromoles of CO2 per milligram of chlorophyll per hour, respectively. The addition of pyruvate or phosphoenolpyruvate to the mesophyll cells increased the rates to 15.2 and 824.6 micromoles of CO2 per milligram of chlorophyll per hour, respectively. The addition of ribose 5-phosphate increased the rate for bundle sheath cells to 106.8 micromoles of CO2 per milligram of chlorophyll per hour. These rates are comparable to those reported for cells isolated by other methods. The Km(HCO3) for mesophyll cells was 0.9 mm; for bundle sheath cells it was 1.3 mm at low, and 40 mm at higher HCO3 concentrations. After 2 hours of photosynthesis by mesophyll cells in 14CO2 and phosphoenolpyruvate, 88% of the incorporated 14C was found in organic acids and 0.8% in carbohydrates; for bundle sheath cells incubated in ribose 5-phosphate and ATP, more than 58% of incorporated 14C was found in carbohydrates, mainly starch, and 32% in organic acids. These findings, together with the stimulation of CO2 fixation by phosphoenolpyruvate for mesophyll cells and by ribose 5-phosphate plus ATP for bundle sheath cells, and the location of phosphoenolpyruvate and ribulose bisphosphate carboxylases in mesophyll and bundle sheath cells, respectively, are in accord with the scheme of C4 photosynthesis which places the Calvin cycle in the bundle sheath and C4 acid formation in mesophyll cells.  相似文献   

17.
Primary leaves of Phaseolus vulgaris show concomitant changes in phospholipid, galactolipid, chlorophyll and fresh weight during leaf development from 3 to 32 days after planting. Phosphatidyl choline, phosphatidyl ethanolamine, and phosphatidyl inositol show only small changes on a mole per cent lipid phosphate basis during leaf development. The chloroplast lipids, phosphatidyl glycerol, monogalactosyl diglyceride (MGDG) and digalactosyl diglyceride (DGDG) all show marked increases and decreases which are coincident with chloroplast development. The decline in the leaf content of chloroplast polar lipids and chlorophyll become evident upon reaching maximal leaf size. The molar ratio of galactolipids (MGDG/DGDG), reaches a maximum value of 2.3 in expanding leaves, but steadily declines during senescence to a minimum value of 1.5 at abscission. The declining ratio is caused by a preferential loss of MGDG in the senescing leaves.  相似文献   

18.
Bundle sheath chloroplasts have been isolated from Zea mays leaves by a procedure involving enzymic digestion of mechanically prepared strands of bundle sheath cells followed by gentle breakage and filtration. The resulting crude chloroplast preparation was enriched by Percoll density layer centrifugation to yield intact chloroplasts (about 20 micrograms chlorophyll per 10-gram leaf tissue) with high metabolic activities. Based on activities of marker enzymes in the chloroplast and bundle sheath cell extracts, the chloroplasts were essentially free of contamination by other organelles and cytoplasmic material, and were generally about 70% intact. Chlorophyll a/b ratios were high (about 10). With appropriate substrates these chloroplasts displayed high rates of malate decarboxylation, measured as pyruvate formation, and CO2 assimilation (maximum rates approximately 5 and 3 micromoles per minute per milligram chlorophyll, respectively). These activities were light dependent, linear for at least 20 minutes at 30°C, and displayed highest rates at pH 8.0. High metabolic rates were dependent on addition of an exogenous source of carbon to the photosynthetic carbon reduction cycle (3-phosphoglycerate or dihydroxyacetone phosphate) and a nucleotide (ATP, ADP, or AMP), as well as aspartate. Generally, neither malate decarboxylation nor CO2 assimilation occurred substantially in the absence of the other activity indicating a close relationship between these processes. Presumably, NADPH required for the photosynthetic carbon reduction cycle is largely supplied during the decarboxylation of malate by NADP-malic enzyme. The results are discussed in relation to the role of bundle sheath chloroplasts in C4 photosynthesis by species of the NADP-malic enzyme type.  相似文献   

19.
Mesophyll and bundle sheath chloroplasts were isolated by differential grinding from the leaves of two NADP-ME C4 plants, Setaria italica Beauv. cv. H-1, Pennisetum typhoides S & H. cv. AKP-2, and a NAD-ME C4 species Amaranthus paniculatus L. The mesophyll chloroplasts of C4 plants possessed slightly lower Km for ADP and Pi than those of bundle sheath chloroplasts. The Hill reaction activities and noncyclic photophosphorylation rates of the bundle sheath chloropiasts from S. italica and P. typhoides were less than one-fifth of those by the mesophyll chloroplasts. But the bundle sheath chloroplasts of A. paniculatus exhibited high rates of Hill reaction, cyclic as well as noncyclic photophosphorylation. The pigment- and eyiochrome composition suggested a relative enrichment of PS 1 in bundle sheath chloroplasts of S. italica and P. typhoides. The chain exists in both mesophyll and bundle sheath chloroplasts. As much as 35–52% of leaf chlorophyll was located in the bundle sheath chloroplasts. The photochemical activities of bundle sheath chloroplasts are significant though a major part of leaf photochemical potential is associated with the mesophyll chloroplasts.  相似文献   

20.
Mayne BC 《Plant physiology》1971,47(5):600-605
Isolated mesophyll cells and bundle sheath cells of Digitaria sanguinalis were used to study the light-absorbing pigments and electron transport reactions of a plant which possesses the C4-dicarboxylic acid cycle of photosynthesis. Absorption spectra and chlorophyll determinations are presented showing that mesophyll cells have a chlorophyll a-b ratio of about 3.0 and bundle sheath cells have a chlorophyll a-b ratio of about 4.5. The absorption spectrum of bundle sheath cells has a greater absorption in the 700 nm region at liquid nitrogen temperature, and there is a relatively greater amount of a pigment absorbing at 670 nm in the bundle sheath cells compared to the mesophyll cells. Fluorescence emission spectra, at liquid nitrogen temperature, of mesophyll cells have a fluorescence 730 nm-685 nm ratio of about 0.82 and bundle sheath cells have a ratio of about 2.84. The reversible light-induced absorption change in the region of P700 absorption is similar in both cell types but bundle sheath cells exhibit about twice as much total P700 change as mesophyll cells on a total chlorophyll basis. The delayed light emission of bundle sheath cells is about one-half that of mesophyll cells. Both mesophyll cells and bundle sheath cells evolve oxygen in the presence of Hill oxidants with the mesophyll cells exhibiting about twice the activity of bundle sheath cells, and both activities are inhibited by 1 μM 3-(3,4-dichlorophenyl)-1, 1-dimethylurea. Ferredoxin nicotinamide adenine dinucleotide phosphate reductase is present in both cells although it is about 3- or 4-fold higher in mesophyll cells than in bundle sheath cells. Glyceraldehyde 3-P dehydrogenases, both nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate, are equally distributed in the two cell types on a chlorophyll basis. Malic enzyme is localized in the bundle sheath cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号