首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium antagonist binding sites were solubilized from rat brain membranes using the detergent 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulfonate (CHAPS). CHAPS-solubilized [3H]nitrendipine binding sites are saturable over a range of 0.05-4 nM and Scatchard analysis reveals a single, high-affinity (KD = 0.49 +/- 0.10 nM), low-capacity (Bmax = 56 +/- 4 fmol/mg of protein) binding site. Reversible ligand competition experiments using solubilized binding sites demonstrated appropriate pharmacologic specificity, with dihydropyridines (nifedipine = nitrendipine greater than Bay K 8644) completely displacing binding, verapamil partially displacing binding, and diltiazem enhancing binding, as previously described in membrane preparations. Lyophilized Crotalus atrox venom was purified by ion exchange chromatography followed by gel filtration to a single peptide band on sodium dodecyl sulfatepolyacrylamide gel electrophoresis. This fraction of molecular weight 60,000 competitively inhibits [3H]nitrendipine binding to both membrane and soluble preparations with an IC50 of 5 micrograms/ml. This polypeptide should serve as a useful ligand for future efforts in purifying the dihydropyridine calcium channel binding site in brain.  相似文献   

2.
We compared the effects of Phospholipases A2, C, B and D on [3H]nitrendipine binding to hamster cardiac membranes, in the absence and presence of ATP or GTP. Phospholipase A2, competitively inhibited [3H]nitrendipine binding to hamster cardiac membranes unchanged by ATP or GTP (Ki = 5 ng/ml); as evidenced by complete and reversible displacement of [3H]nitrendipine binding and increase in KD on Scatchard analyses. Phospholipase C also completely inhibited [3H]nitrendipine binding to hamster cardiac membranes (Ki = 5 micrograms/ml) with a decrease in Bmax and no change in KD on Scatchard analyses. The addition of GTP alone inhibited the PLC effect in EGTA-treated membranes. The addition of GTP with either CaCl2 or ATP or both resulted in an equal and opposite enhancement of the PLC effect. Phospholipases B and D had no effect on [3H]nitrendipine binding. These data support: (1) Direct effect of PLA2 on dihydropyridine binding. (2) Indirect regulation of dihydropyridine binding by Phospholipase C through a GTP and ATP-sensitive mechanism.  相似文献   

3.
The effects of bacitracin were investigated on [3H]nitrendipine binding to rat brain and cardiac membranes in a low ionic strength (5 mM Tris-HCl) buffer. Bacitracin inhibited [3H]nitrendipine binding to rat brain and cardiac membranes with IC50 values of 400 +/- 100 and 4600 +/- 400 micrograms/mL, respectively. Scatchard analysis in brain membranes revealed that bacitracin inhibited [3H]nitrendipine binding primarily by reducing the Bmax but also by producing a small increase in the Kd. In brain membranes, Na+ (100 mM) and Ca2+ (2 mM) reduced the potency of bacitracin to inhibit [3H]nitrendipine binding by approximately sixfold with IC50 values of 2600 +/- 300 and 2100 +/- 400 micrograms/mL observed for bacitracin in the presence of 100 mM Na+ and 2 mM Ca2+, respectively. The EC50 values for the effects of Na+ and Ca2+ were 800 +/- 200 microM and 25 +/- 5 mM. K+, Mg2+, choline, and increasing the assay buffer of Tris-HCl to 50 mM also decreased the inhibition of [3H]nitrendipine binding by bacitracin. These results suggest that bacitracin specifically modulates [3H]nitrendipine binding in a cation-dependent manner and that brain and cardiac dihydropyridine binding sites are either biochemically different or exist in a different membrane environment.  相似文献   

4.
Effects of temperature and d-cis-diltiazem (DTZ) on [3H]nitrendipine (NTD) and [3H]nimodipine (NIM) binding to skeletal muscle t-tubular membranes were studied. A decrease in temperature from 37 degrees C to 10 degrees C decreased KD and increased Bmax slightly. DTZ increased binding by increasing Bmax under all conditions and also decreased KD for NTD at 37 degrees C. The binding protein labeled with [3H]isothiocyanate dihydropyridine revealed a molecular weight of 36,000. The binding site for NTD was solubilized by deoxycholate and dihydropyridine binding was still stimulated by DTZ in the solubilized form.  相似文献   

5.
Solubilization of the calcium antagonist receptor from rat brain   总被引:7,自引:0,他引:7  
[3H]Nitrendipine binds with high affinity to a calcium antagonist receptor in rat brain membranes. At 4 degrees C, treatment with digitonin solubilized the calcium antagonist receptor as a stable complex with [3H]nitrendipine. The nitrendipine concentration that gave a half-maximal amount of the solubilized [3H]nitrendipine-receptor complex was identical to the Kd for specific nitrendipine binding to brain membranes. Nitrendipine dissociated from digitonin-solubilized and membrane-bound receptors with a half-time of 24 to 30 min at 20 degrees C. Verapamil increased and diltiazem decreased the dissociation rate to a similar extent in both preparations indicating that the solubilized receptor contains both the dihydropyridine and diltiazem/verapamil binding sites. Sucrose gradient sedimentation experiments gave a value of S20, omega = 19.2 for the receptor-digitonin complex. The solubilized calcium antagonist receptor binds specifically to wheat germ agglutinin-Sepharose columns consistent with an identification as a glycoprotein.  相似文献   

6.
The effects of phospholipase A2 treatment on the tetrodotoxin receptors in Electrophorus electricus was studied. (1) The binding of [3H]tetrodotoxin to electroplaque membranes was substantially reduced by treatment of the membranes with low concentrations of phospholipase A2 from a number of sources, including bee venom, Vipera russelli and Crotalus adamanteus and by beta-bungarotoxin. (2) Phospholipase A2 from bee venom and from C. adamanteus both caused extensive hydrolysis of electroplaque membrane phospholipids although the substrate specificity differed. Analysis of the phospholipid classes hydrolyzed revealed a striking correlation between loss of toxin binding and hydrolysis of phosphatidylethanolamine but not of phosphatidylserine. (3) The loss of toxin binding could be partially reversed by treatment of the membranes with bovine serum albumin, conditions which are known to remove hydrolysis products from the membrane. (4) Equilibrium binding studies on the effects of phospholipase A2 treatment of [3H]tetrodotoxin binding showed that the reduction reflected loss of binding sites and not a change in affinity. (5) These results are interpreted in terms of multiple equilibrium states of the tetrodotoxin-receptors with conformations determined by the phospholipid environment.  相似文献   

7.
The 1,4-dihydropyridine (+/-)-[3H]nitrendipine reversibly binds to mitochondrial preparations from guinea-pig heart with a dissociation constant (Kd) of 593 +/- 77 nM and a maximum density of binding sites (Bmax.) of 1.75 +/- 0.27 nmol/mg of protein. This low-affinity high-capacity 1,4-dihydropyridine-binding site does not discriminate between the enantiomers of nitrendipine and is also found in mitochondrial membranes from guinea-pig liver (Kd 586 +/- 91 nM; Bmax. 0.36 +/- 0.04 nmol/mg of protein) and kidney (Kd 657 +/- 149 nM; Bmax. 0.56 +/- 0.12 nmol/mg of protein). Phenylalkylamines (e.g. verapamil) inhibit ( +/- )-[3H]nitrendipine binding with micromolar inhibition constants, but the benzothiazepine D-cis-diltiazem, a potent Ca2+-channel blocker, is without effect. The binding is heat-stable, shows a V-shaped pH-dependence with a minimum around pH 7.0, and is strongly dependent on ionic strength in the incubation medium. The cations La3+ greater than Cd2+ much greater than Co2+ greater than Ca2+ much greater than Ba2+ greater than Mg2+ greater than Li+ greater than Na+ and the anions NO3- greater than C1- greater than or equal to F- stimulate the binding, whereas PO4(3-) greater than SO4(2-) slightly inhibit it. The low-affinity ( +/- )-[3H]nitrendipine-binding site located on the mitochondrial inner membrane is biochemically and pharmacologically different from the 1,4-dihydropyridine-receptor domain of the L-type Ca2+ channel. Furthermore, it is not identical with any of the low-affinity 1,4-dihydropyridine-binding sites described so far.  相似文献   

8.
Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of 125I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity.  相似文献   

9.
The dihydropyridine receptor is associated with the L-type Ca2+ channel in the cell membrane. In this study we have examined the effects of group-specific modification on dihydropyridine binding in heart sarcolemmal membranes isolated from the rabbit. Specifically, dithiothreitol and glutathione were employed to assess the possible role of disulfide (-SS-) bonds in the binding of [3H]dihydropyridines. NEM, PCMS and iodoacetamide were employed to examine the effect of blocking free sulfhydryl groups (-SH) on the binding of [3H]dihydropyridines to their receptor in heart sarcolemma. Glutathione inhibited [3H]PN200-110 binding to sarcolemmal membranes 100%, with an IC50 value of 50 microM, while DTT inhibited maximally by 75% with an IC50 value in the millimolar range. Alkylation of free sulfhydryl groups by NEM or iodoacetamide inhibited binding of [3H]PN200-110 binding in cardiac sarcolemma approx. 40-60%. Blocking of free sulfhydryl groups by PCMS completely inhibited [3H]PN200-110 binding to their receptor in sarcolemmal membranes in a dose-dependent manner with an IC50 value of 20 microM. These results suggest the involvement of disulfide bonds and free sulfhydryl groups in DHP binding to the L-type Ca2+ channel in heart muscle. We also examined the effect of membrane phosphorylation on the specific binding of the dihydropyridine [3H]nitrendipine to its receptor. Phosphorylation was studied in cardiac sarcolemmal as well as skeletal muscle transverse-tubule membranes. Phosphorylation due to endogenous protein kinase and cAMP-dependent protein kinase was without effect on [3H]nitrendipine binding in both cardiac sarcolemmal and skeletal muscle membranes. Addition of exogenous calmodulin under conditions known to promote Ca2+/calmodulin-dependent phosphorylation increased [3H]nitrendipine binding 20% with no alteration in KD in both types of membrane preparation. These results suggest a role for calmodylin in dihydropyridine binding to L-type Ca2+ channels.  相似文献   

10.
3H]nitrendipine receptors in skeletal muscle   总被引:39,自引:0,他引:39  
The richest source of receptors for the organic calcium channel blocker [3H]nitrendipine in muscle is the transverse tubule membrane. The tubular membrane preparation binds [3H]nitrendipine with a high affinity and has a very high number of [3H]nitrendipine binding sites. For example, for the transverse tubule membrane preparation from rabbit muscle, the dissociation constant of the nitrendipine-receptor complex is 1.8 +/- 0.3 nM and the maximum binding capacity Bmax = 50 +/- 6 pmol/mg of protein. Similar results have been found with a membrane preparation from frog muscle. The dissociation constant found at equilibrium is near that determined from the ratio of rate constants for association (kappa 1) and dissociation (kappa-1). Binding of [3H] nitrendipine is pH-dependent and reveals the presence of an essential ionizable group with a pK of 5.4 on the nitrendipine receptor. The binding is destroyed by proteases showing that the receptor is a protein. Three different classes of Ca2+ channel blockers inhibit [3H]nitrendipine to its specific site. (i) The dihydropyridine analogs of nitrendipine which are competitive inhibitors of [3H]nitrendipine. These molecules form tight complexes with the nitrendipine receptor with dissociation constants between 1.4 and 4.0 nM. (ii) Other antiarrhythmic molecules like verapamil, amiodarone, bepridil, and F13004 which are noncompetitive inhibitors of [3H]nitrendipine binding with dissociation constants between 0.2 and 1 microM. (iii) Divalent cations like Ni2+, Co2+, Mn2+, or Ca2+ which are noncompetitive inhibitors of [3H]nitrendipine binding with the following rank order of potency: Ni+ (K0.5 = 1.8 mM) greater than Co2+ (K0.5 = 2.7 mM) greater than Mn2+ (K0.5 = 4.8 mM) greater than Ca2+ (K0.5 = 65 mM).  相似文献   

11.
A radioreceptor assay using [3H]nitrendipine and rat cerebral cortical membranes, in conjunction with equilibrium dialysis, measures the unbound (free) level of nitrendipine in human sera. The sensitivity of the assay is 0.1–0.2 picomoles/ml and is linear from 4 × 10?11 to 4 × 10?9 M nitrendipine. Other dihydropyridine calcium channel antagonists may be measured using this assay if these compounds are used to generate the standard curve. Blank serum interferes with specific [3H]nitrendipine binding (24 percent inhibition per 20 μ1 serum) whereas serum dialysates do not. Total serum nitrendipine levels may be measured, but the sensitivity of the assay is decreased due to interference by serum. Nitrendipine is highly protein bound in serum (93 – 99 percent). This protein binding is essentially unchanged over a serum concentration from 1 to 100 ng/ml. This assay is suitable for pharmacokinetic and pharmacodynamic studies.  相似文献   

12.
[3H]Spiperone specific binding by microsomal membranes isolated from sheep caudate nucleus is decreased by trypsin and phospholipase A2 (Vipera russeli), but is insensitive to neuraminidase. The inhibitory effect of phospholipase A2 is correlated with phospholipid hydrolysis. After 15 min of phospholipase (5 micrograms/mg protein) treatment, a maximal effect is observed; the maximal lipid hydrolysis is about 56% and produces 82% reduction in [3H]spiperone binding. Equilibrium binding studies in nontreated and treated membranes showed a reduction in Bmax from a value of 388 +/- 9.2 fmol/mg protein before phospholipase treatment to a value of 52 +/- 7.8 fmol/mg protein after treatment, but no change in affinity (KD = 0.24 +/- 0.042 nM) was observed. Albumin washing of treated membranes removes 47% of lysophosphatidylcholine produced by phospholipid hydrolysis without recovering [3H]spiperone binding activity. However, the presence of 2.5% albumin during phospholipase A2 action (1.5 micrograms/mg protein) prevents the inhibitory effect of phospholipase on [3H]spiperone binding to the membranes, although 28% of the total membrane phospholipid is hydrolysed. Lysophosphatidylcholine, a product of phospholipid hydrolysis, mimics the phospholipase A2 effect on receptor activity, but the [3H]spiperone binding inhibition can be reversed by washing with 2.5% defatted serum albumin. Addition of microsomal lipids to microsomal membranes pretreated with phospholipase does not restore [3H]spiperone stereospecific binding. It is concluded that the phospholipase-mediated inhibition of [3H]spiperone binding activity results not only from hydrolysis of membrane phospholipids, but also from an alteration of the lipid environment by the end products of phospholipid hydrolysis.  相似文献   

13.
Voltage-dependent calcium channels from ileal smooth muscle can be affinity-labeled with a [3H]dihydropyridine isothiocyanate radioligand. We examined the binding of this agent to brain membranes, to compare the properties of calcium channel drug binding sites in brain with those previously described in ileum. In brain, the [3H]dihydropyridine isothiocyanate labels sites that correspond in number and pharmacologic characteristics to binding sites for the classic calcium entry blocker, [3H]nitrendipine. However, in contrast to the covalent nature of dihydropyridine isothiocyanate binding in ileum, brain calcium channels are labeled reversibly. This difference in binding properties may reflect structural variations in voltage-dependent calcium channels in different tissues.  相似文献   

14.
L D McVittie  D R Sibley 《Life sciences》1989,44(23):1793-1802
A phencyclidine (PCP) receptor binding site has been solubilized in an active ligand-binding state from rat cerebral cortical membranes with sodium deoxycholate. Optimal receptor solubilization occurs at a detergent/protein ratio of 0.5 (w/w); for 5 mg protein/ml solubilized with 0.25% sodium deoxycholate, about 60% of the protein and 25% of the receptor is solubilized. Specific binding of either [3H]-N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) or [3H]MK-801 is measurable by filtration through Sephadex G-50 columns or glass fiber filters; more than 60% of the binding activity is stable after 48 h at 4 degrees C. In the presence of detergent, [3H]TCP binding exhibits a Kd of 250 nM, a Bmax of 0.56 pmol/mg protein, and a pharmacological profile consistent with that of the membrane-bound PCP receptor, although most drugs bind with affinities 2 to 8 fold lower than in membranes. Upon reduction of detergent concentration, binding parameters approximate those for the membrane-bound receptor ([3H]TCP binding: Kd = 48 nM, Bmax = 1.13 pmol/mg protein).  相似文献   

15.
The novel kappa agonist U50-488H in vitro produced a concentration-dependent decrease (0.25-25 microM) in [3H]nimodipine binding in neuronal P2 fractions [corrected] from rat brain cortex. Kinetic analysis indicates the decrease in binding results from a reduced Bmax with no change in affinity (Kd). The kappa antagonist, MR2266, blocked the decrease in [3H]nimodipine binding to membrane fractions. At equimolar concentrations (25 microM), morphine in vitro had no effect on [3H]nimodipine binding, while U50-488H demonstrated potent inhibition. Further kinetic analysis indicates that the IC50 for U50-488H is 0.5-0.7 microM with a KI by a Dixon plot of 1.5-1.7 microM [corrected]. These results suggest that kappa opiate receptors may be coupled to dihydropyridine receptors and as a result modulate Ca++ entry and neurotransmitter release in brain neurons.  相似文献   

16.
Binding of 125I-omega-conotoxin GVIA and [3H]nitrendipine to membranes from bovine adrenal medulla was investigated to test for the presence of N- and L-type Ca2+ channels in adrenal chromaffin cells. Saturable, high-affinity binding sites for 125I-omega-conotoxin and [3H]nitrendipine were detected in a membrane fraction from adrenal medulla. [3H]Nitrendipine binding sites were found to have a KD of 500 +/- 170 pM and a Bmax of 26 +/- 11 pmol/g of protein. 125I-omega-Conotoxin binding sites had a KD of 215 +/- 56 pM and a Bmax of 105 +/- 18 pmol/g of protein, about four times the number of sites found for [3H]nitrendipine. 125I-omega-Conotoxin binding was potently inhibited by unlabeled toxin and Ca2+ but was unaffected by dihydropyridines, verapamil, and diltiazem. [3H]Nitrendipine binding was not affected by omega-conotoxin, whereas it was inhibited by other dihydropyridines. Bay K 8644 potentiated K+-evoked cytosolic Ca2+ transients measured by fura-2 fluorescence, and this potentiation was completely blocked by nifedipine. In contrast, omega-conotoxin had no effect on Bay K 8644-evoked Ca2+ transients. Thus, the binding sites for omega-conotoxin and for nitrendipine appear to be different. The results confirm the presence of L-type Ca2+ channels and open the possibility of N-type Ca2+ channels as the omega-conotoxin binding sites in chromaffin cell membranes.  相似文献   

17.
The modulation of adenosine receptor with K+(ATP) channel blocker, glibenclamide, was investigated using the radiolabeled A2A-receptor selective agonist [3H]CGS 21680. Radioligand binding studies in bovine brain striatal membranes (BBM) indicated that unlabeled CGS 21680 displaced the bound [3H]CGS 21680 in a concentration-dependent manner with a maximum displacement being approximately 65% at 10(-4) M. In the presence of 10(-5) M glibenclamide, unlabeled CGS 21680 increased the displacement of bound [3H]CGS 21860 by approximately 28% at 10(-4) M. [3H]CGS 21680 bound to BBM in a saturable manner to a single binding site (Kd = 10.6+/-1.71 nM; Bmax = 221.4+/-6.43 fmol/mg of protein). In contrast, [3H]CGS 21680 showed saturable binding to two sites in the presence of 10(-5) M glibenclamide; (Kd = 1.3+/-0.22 nM; Bmax = 74.3+/-2.14 fmol/mg protein; and Kd = 8.9+/-0.64 nM; Bmax = 243.2+/-5.71 fmol/mg protein), indicating modulation of adenosine A2A receptors by glibenclamide. These studies suggest that the K+(ATP) channel blocker, glibenclamide, modulated the adenosine A2A receptor in such a manner that [3H]CGS 21680 alone recognizes a single affinity adenosine receptor, but that the interactions between K+(ATP) channels and adenosine receptors.  相似文献   

18.
Binding of [3H]nitrendipine, [3H]nimodipine, and (+)[3H]PN 200-110 to microsomal preparations of guinea pig smooth and cardiac muscle and brain synaptosomes revealed high affinity interaction with KD values in the sequence, (+)PN 200-110 greater than nitrendipine greater than nimodipine. Bmax values for a particular tissue were independent of the 1,4-dihydropyridine employed in radioligand binding at 25 degrees C. The temperature dependence of [3H]nitrendipine binding in cardiac and smooth muscle microsomal preparations and brain synaptosomes was measured from 0 degrees to 37 degrees C and for skeletal muscle preparations from 0 degrees to 30 degrees C. Bmax values increased with temperature for cardiac membranes, but did not vary in other tissues. van't Hoff plots were nonlinear in all tissues, enthalpy and entropy changes becoming increasingly negative with increasing temperature. Competition binding of the activator-antagonist enantiomeric 1,4-dihydropyridine pairs of Bay k 8644 and PN 202-791 for [3H]nitrendipine in smooth muscle did not reveal significant thermodynamic differences between activator and antagonist molecules.  相似文献   

19.
The binding of [3H]kainate to goldfish brain membrane fragments was investigated. Scatchard analysis revealed a single class of binding sites in Tris-HCl buffer with a Kd of 352 nM and a Bmax of 3.1 pmol/mg wet weight. In Ringer's saline, [3H]kainate bound with a Bmax of 1.8 pmol/mg wet weight and a Kd of 214 nM. Binding in Ringer's saline, but not Tris-HCl buffer, displayed positive cooperativity with a Hill coefficient of 1.15. The [3H]kainate binding sites were solubilized in Ringer's saline using the nonionic detergent n-octyl-beta-D-glucopyranoside. Approximately 30-50% of the total number of membrane-bound binding sites were recovered on solubilization. The Kd of [3H]kainate for solubilized binding sites was approximately 200 nM. The rank order of potency for glutamatergic ligands at inhibiting [3H]kainate binding was identical and the competitive ligands had similar Ki values in both membranes and solubilized extracts. In membrane preparations, [3H]kainate displayed a two component off-rate with koff values of 0.97 min-1 and 0.07 min-1; in solubilized extracts, however, only a single off-rate (koff = 0.52 min-1) was observed. The hydrodynamic properties of n-octyl-beta-D-glucopyranoside solubilized [3H]kainate binding sites was investigated by sucrose density centrifugation. A single well defined peak was detected which yielded a sedimentation coefficient of 8.3 S. The results presented in this report suggest that goldfish brain may provide an ideal system in which to study kainate receptor biochemistry.  相似文献   

20.
T V Dam  R Quirion 《Peptides》1986,7(5):855-864
[3H]Substance P ([3H]SP) was used to characterize substance P (SP) receptor binding sites in guinea pig brain using membrane preparations and in vitro receptor autoradiography. Curvilinear Scatchard analysis shows that [3H]SP binds to a high affinity site (Kd = 0.5 nM) with a Bmax of 16.4 fmol/mg protein and a low affinity site (Kd = 29.6 nM) with a Bmax of 189.1 fmol/mg protein. Monovalent cations generally inhibit [3H]SP binding while divalent cations substantially increased it. The ligand selectivity pattern is generally similar to the one observed in rat brain membrane preparation with SP being more potent than SP fragments and other tachykinins. However, the potency of various nucleotides is different with GMP-PNP greater than GDP greater than GTP. The autoradiographic distribution of [3H]SP binding sites shows that high amounts of sites are present in the hippocampus, striatum, olfactory bulb, central nucleus of the amygdala, certain thalamic nuclei and superior colliculus. The cortex is moderately enriched in [3H]SP binding sites while the substantia nigra contains only very low amounts of sites. Thus, the autoradiographic distribution of SP binding sites is fairly similar in both rat and guinea pig brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号