首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Rottenberg  R E Koeppe 《Biochemistry》1989,28(10):4361-4367
Gramicidin and the truncated derivatives desformylgramicidin (desfor) and des(formylvalyl)gramicidin (desval) stimulate monovalent cation transport in rat liver mitochondria. Cation fluxes were compared indirectly from the effect of cations on the membrane potential at steady state (state 4) or from the associated stimulation of electron transport. Rb+ transport was measured directly from the uptake of 86Rb. The truncated gramicidins show enhanced selectivity for K+ and Rb+ when compared to gramicidin. Moreover, the pattern of selectivity within the alkali cation series is altered, i.e., Rb+ greater than K+ greater than Cs+ greater than Na+ greater than Li+ for desfor and desval as compared to Cs+ greater than Rb+ greater than K+ = Na+ greater than Li+ for gramicidin. The cation fluxes through the truncated derivatives are more strongly dependent on the cation concentration. The presence of high concentrations of permeating cation enhances the transport of other cations through the truncated derivative channels, suggesting that cations are required for stabilizing the channel structure. In high concentrations of KCl, desfor and desval are nearly as effective as gramicidin in collapsing the mitochondrial membrane potential, and, consequently, in the uncoupling of oxidative phosphorylation and enhancement of ATP hydrolysis. Preliminary experiments with liposomes show that 86Rb exchange is stimulated by desfor and desval almost to the same extent as gramicidin. These results strongly suggest that the truncated gramicidins form a novel conducting channel which differs from the gramicidin head-to-head, single-stranded beta 6.3-helical dimer ("channel") in its conductance characteristic and its structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The secondary transport systems of the yeast vacuolar membrane have been investigated by the method of radioactive isotopes [( 14C]arginine); activation of H+-ATPase by cations (Cat+), when the enzyme is under H+ control and measurement of changes in the proton gradient (delta pH) and membrane potential (Em) due to the supposed substrates of the transporters. The main mechanism of cation transport across the yeast tonoplast is probably H+/Cat+ antiport. The apparent Km of antiporters for Ca2+, Mg2+, Mn2+, Zn2+ and Pi are 0.06, 0.3, 0.8, 0.055-0.17 and 1.5 mM, respectively.  相似文献   

3.
S Luvisetto  G F Azzone 《Biochemistry》1989,28(3):1100-1108
Addition of gramicidin D to liver mitochondria, incubated in low- or high-salt media, results in stimulation of respiration in the absence or presence of depression of delta muH, respectively. Gramicidin D concentrations 2 orders of magnitude higher are required in the low-salt media with full uncoupling at 1 nmol of gramicidin.mg-1. The stimulation of respiration is not accompanied by increased passive proton influx in low-salt media. In high-salt media, the extent of respiratory stimulation and the extent of delta muH depression differ according to the nature and concentration of cation. The flow-force relationship is very steep when gramicidin D induced uncoupling occurs in low-salt media and much less steep in high-salt media. A multiplicity of flow-force relationship, respiratory rate vs delta muH, is obtained, the slope of which depends on the nature and concentration of cation, and which can be reproduced by computer simulation by introducing a variable extent of proton cycling either in the membrane or in the pump. The apparent proton conductance, as analyzed in the relationship of Je/delta muH vs delta muH, increases in the so-called ohmic and nonohmic regions according to whether gramicidin D is added in high-salt or low-salt media, respectively. Titration with antimycin of the respiratory control ratio (RCR) in gramicidin D treated mitochondria leads to a depression of the RCR in high-salt but not in low-salt media. The view is discussed that in low-salt media the gramicidin D induced uncoupling is due to a cycling of protons within a proton domain operationally located at or near the proton pump.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Free fatty acids (FFA) are known to uncouple oxidative phosphorylation in mitochondria. However, their mechanism of action has not been elucidated as yet. In this study we have investigated in detail the patterns of uncoupling by the FFA oleate and palmitate in rat liver mitochondria and submitochondrial particles. The patterns of uncoupling by FFA were compared to uncoupling induced by the ionophores valinomycin (in the presence of K+) and gramicidin (in the presence of Na+) and the proton translocator carbonyl cyanide m-chlorophenylhydrazone (CCCP). The most striking difference in the pattern of uncoupling relates to the effect on the proton electrochemical potential gradient, delta mu H. Uncoupling by ionophores, particularly valinomycin, is associated with and most likely caused by a major reduction of delta mu H. In contrast, uncoupling by FFA is not associated with a significant reduction of delta mu H, indicating another mechanism of uncoupling. We suggest the use of the term decouplers for uncoupling agents such as FFA and general anesthetics that do not collapse the delta mu H [Rottenberg, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 3313-3317]. The protonophore CCCP and to some extent the ionophore gramicidin indicate a mixed mode of uncoupling since their effect on delta mu H is moderate when compared to that of valinomycin. Another distinguishing feature of uncouplers that collapse the delta mu H is their ability to stimulate ADP-stimulated respiration (state 3) further. Decouplers such as FFA and general anesthetics do not stimulate state 3 respiration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
U Pick  M Weiss  H Rottenberg 《Biochemistry》1987,26(25):8295-8302
Palmitic acid and gramicidin D at low concentrations uncouple photophosphorylation in a mechanism that is inconsistent with classical uncoupling in the following properties: (1) delta pH, H+ uptake, or the transmembrane electric potential is not inhibited. (2) O2 evolution is stimulated under nonphosphorylating conditions but slightly inhibited in the presence of adenosine 5'-diphosphate + inorganic phosphate (Pi). (3) Light-triggered adenosine 5'-triphosphate (ATP)-Pi exchange is hardly affected, and ATPase activity is only slightly stimulated. (4) ATP-induced delta pH formation is selectively inhibited. This characteristic uncoupling is observed only when the native coupling sites of the electron transport system are used for energization such as for methylviologen-coupled phosphorylation. With pyocyanine, which creates an artificial coupling site, 1000-fold higher gramicidin D and higher palmitic acid concentrations are required for inhibition, and the inhibition is accompanied by a decrease in delta pH. Moreover, comparison between photosystem 1 and photosystem 2 electron transport and the effects of membrane unstacking suggest that low gramicidin D preferentially inhibits photosystem 2, while palmitic acid inhibits more effectively photosystem 1 coupling sites. The inhibitory capacity of fatty acids significantly drops when the chain length is reduced below 16 hydrocarbons or upon introduction of a single double bond in the hydrocarbon chain. It is suggested that palmitic acid and gramicidin D interfere with a direct H+ transfer between specific electron transport and the ATP synthase complexes, which provides an alternative coupling mechanism in parallel with bulk to bulk delta microH+. The sites of inhibition seem to be located in chloroplast ATP synthase, photosystem 2, and the cytochrome b6f complexes.  相似文献   

6.
The mechanism of uncoupling of oxidative phosphorylation by carbonyl cyanide p-trifluoromethoxy)phenylhydrazone (FCCP), a typical weak acid protonophore, oleic acid, a fatty acid, and chloroform, a general anesthetic, has been investigated by measuring in mitochondria their effect on (i) the transmembrane proton electrochemical potential gradient (delta mu H) and the rates of electron transfer and adenosine 5'-triphosphate (ATP) hydrolysis in static head, (ii) delta mu H and the rates of electron transfer and ATP synthesis in state 3, and (iii) the membrane proton conductance. Both FCCP and oleic acid increase the membrane proton conductance, and accordingly, they cause a depression of delta mu H [generated by either the redox proton pumps or the adenosinetriphosphatase (ATPase) proton pumps]. Although their effects on ATP synthesis/hydrolysis, respiration, and delta mu H are qualitatively consistent with a pure protonophoric uncoupling mechanism and an additional inhibitory action of oleic acid on both the ATPases and the electron-transfer enzymes, a quantitative comparison between the dissipative proton influx and the rate of either electron transfer or ATP hydrolysis (multiplied by either the H+/e- or the H+/ATP stoichiometry, respectively) at the same delta mu H shows that the increase in membrane conductance induced by FCCP and oleic acid accounts for the stimulation of the rate of ATP hydrolysis but not for that of the rate of electron transfer. Chloroform (at concentrations that fully inhibit ATP synthesis) only very slightly increases the proton conductance of the mitochondrial membrane and causes only a little depression of delta mu H.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effect of membrane dipole potential on gramicidin channel activity in bilayer lipid membranes (BLMs) was studied. Remarkably, it appeared that proton conductance of gramicidin A (gA) channels responded to modulation of the dipole potential oppositely as compared with gA alkali metal cation conductance. In particular, the addition of phloretin, known to reduce the membrane dipole potential, resulted in a decrease in gA proton conductance, on one hand, and an increase in gA alkali metal conductance, on the other hand, whereas 6-ketocholestanol, the agent raising the membrane dipole potential, provoked an increase in gA proton conductance as opposed to a decrease in the alkali metal cation conductance. The peculiarity of the 6-ketocholestanol effect consisted in its dependence on the H(+) concentration. The experiments with the impermeant dipolar compound, phloridzin, showed that the response of proton transport through gramicidin channels to varying the membrane dipole potential did not change qualitatively if the dipole potential of only one monolayer or both monolayers of the BLM was altered. In contrast to gA proton conductance, the single-channel lifetime changed similarly with varying the membrane dipole potential, regardless of the kind of permeant cations (protons or potassium ions). The results of this study could be tentatively accounted for by an assumption that one of the rate-limiting steps of proton conduction through gramicidin channels represents, in fact, movement of negatively charged species (negative ionic defects) across a membrane.  相似文献   

8.
From the chemiosmotic hypothesis it follows that no change is expected in potency of an uncoupler to inhibit an energy-driven reaction in an energy-transducing membrane if the energy-requiring part of the reaction, the so-called secondary proton pump, is partially inhibited by a specific, tightly bound inhibitor. An increase in potency upon inhibition of the primary pump may be expected, due to a lower rate of the total proton flow that can be used by the secondary pump and dissipated by the uncoupler. Contrary to this prediction several uncouplers (S13, SF6847, 2,4-dinitrophenol, valinomycin + nigericin) show an increase in uncoupling efficiency in ATP-driven reverse electron transfer (reversal) upon inhibition of the secondary pump in this reaction, the NADH:Q oxidoreductase, by rotenone. The increase in uncoupling efficiency is proportional to the decrease in the rate of reversal, that is to the decrease in concentration of active secondary pump. Similarly, upon inhibition of the primary pump, the ATPase, with oligomycin, an increase in uncoupling efficiency was found, also proportional to the decrease in the rate of reversal. When the pore-forming uncoupler gramicidin was used, no change in uncoupling potency was found upon inhibition of NADH:Q oxidoreductase. Inhibition of the ATPase, however, resulted in a proportionally lower uncoupling titre for gramicidin, just as was found for S13 in the presence of oligomycin. A difference was also found in the relative concentrations of S13 and gramicidin required to stimulate ATP hydrolysis or to inhibit reversal. The amount of S13 needed to stimulate ATP hydrolysis was clearly higher than the amount needed to inhibit reversal. On the contrary, the titre of gramicidin for both actions was about the same. To explain these results we propose that gramicidin uncouples via dissipation of the bulk delta mu H+, whereas the carrier-type uncouplers preferentially interfere with the direct energy transduction between the ATPase and redox enzymes. This is in accordance with the recently developed collision hypothesis.  相似文献   

9.
Phospholipid vesicles containing bovine heart mitochondrial cytochrome c oxidase (COV) were characterized for electron transfer and proton translocating activities in the presence of the mobile potassium ionophore, valinomycin, and the channel-forming ionophore, gramicidin, in order to determine if the ionophores modify the functional properties of the enzyme. In agreement with previous work, incubation of COV with valinomycin resulted in a perturbation of the absorbance spectrum of oxidized heme aa3 in the Soret region (430 nm); gramicidin had no effect on the heme aa3 absorbance spectrum. Different concentrations of the two ionophores were required for maximum respiratory control ratios in COV; 40- to 70-fold higher concentrations of valinomycin were required to completely uncouple electron transfer activity when compared to gramidicin. The proton translocating activity of COV incubated with each inophore gave a similar apparent proton translocated to electron transferred stoichiometry (H+/e- ratio) of 0.66 +/- 0.10. However, COV treated with low concentrations of gramicidin (0.14 mg/g phospholipid) exhibited 1.5- to 2.5-fold higher rates of alkalinization of the extravesicular media after the initial proton translocation reaction than did COV treated with valinomycin, suggesting that gramicidin allows more rapid equilibration of protons across the phospholipid bilayer during the proton translocation assay. Moreover, at higher concentrations of gramicidin (1.4 mg/g phospholipid), the observed H+/e- ratio decreased to 0.280 +/- 0.020, while the rate of alkalinization increased an additional 2-fold, suggesting that at higher concentrations, gramicidin acts as a proton ionophore. These results support the hypothesis that cytochrome c oxidase is a redox-linked proton pump that operates at similar efficiencies in the presence of either ionophore. Low concentrations of gramicidin dissipate the membrane potential in COV most likely by a channel mechanism that is different from the carrier mechanism of valinomycin, yet does not make the phospholipid bilayer freely permeable to protons.  相似文献   

10.
The proton gradient (delta pH) and electrical potential (delta psi) across the neurosecretory vesicles were measured using the optical probes 9-aminoacridine and Oxanol VI, respectively. The addition of neurosecretory vesicles to 9-aminoacridine resulted in a rapid quenching of the dye fluorescence which was reversed when the delta pH was collapsed with ammonium chloride or K+ in the presence of nigericin. From fluorescence quenching data and the intravesicular volume, delta pH across the membrane was calculated. Mg2+ ATP caused a marked carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive change in the membrane potential measured using Oxanol VI (plus 100 mV inside positive), presumably due to H+ translocation across the neurosecretory vesicle membrane. Imposition of this membrane potential was responsible for the lysis of vesicles in the presence of permeant anions. The effectiveness of these anions to support lysis reflected the relative permeability of the anion which followed the order acetate greater than I- greater than Cl greater than F- greater than SO4- = isethionate = methyl sulfate. These data showed that the neurosecretory vesicles possess a membrane H+-translocating system and prompted the study of Mg2+-dependent ATPase activities in the vesicle fractions. In intact vesicles a Mg2+ ATPase appeared to be coupled to electrogenic proton translocation, since the enzyme activity was enhanced by uncoupling the electrical potential, using proton ionophores. Inhibition of this enzyme with dicyclohexylcarbodiimide also inhibited the carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive delta psi across the vesicle membrane caused by H+ translocation. A second Mg2+ ATPase was also found on the vesicle membranes which is sensitive to vanadate. Complete inhibition of this enzyme with vanadate had little effect on the proton ionophore-uncoupled ATPase activity or on the Mg2+ ATP-induced membrane potential change.  相似文献   

11.
Plasma membrane vesicles were reconstituted by freezing and thawing of purified plasma membrane fraction from the yeast Metschnikowia reukaufii and phosphatidylcholine (type II-S from Sigma). The reconstituted plasma membrane vesicles generated a proton gradient (acidic inside) upon addition of ATP in presence of alkali cations. delta pH generation was most efficient when K+ was present both outside and inside the plasma membrane vesicles. Both ATPase activity and proton translocation in plasma membrane vesicles were inhibited by orthovanadate (50% inhibition at 100 microM). Plasma membrane vesicles reconstituted without added phosphatidylcholine generated in addition to delta pH, also an electrical potential difference delta psi (inside positive). Delta psi generation exhibited no K+ specificity. 50 microM dicyclohexylcarbodiimide inhibited completely delta psi generation whereas the K+-channel blocker quinine (5 microM) caused an 8-fold increase of delta psi. The proton gradient was much less affected by the agents. Taking into account the K+-dependent stimulation of the plasma membrane ATPase of M. reukaufii, these results further support the conclusion that the ATPase operates as a partially electrogenic H+/K+ exchanger, as was also suggested for other yeast plasma membrane ATPases.  相似文献   

12.
To discover a gastric antisecretory agent more potent than existing proton pump inhibitors, novel pyrrole derivatives were synthesized, and their H(+),K(+)-ATPase inhibitory activities and inhibitory action on histamine-stimulated gastric acid secretion in rats were evaluated. Among the compounds synthesized, compound 17a exhibited selective and potent H(+),K(+)-ATPase inhibitory activity through reversible and K(+)-competitive ionic binding; furthermore, compound 17c exhibited potent inhibitory action on histamine-stimulated gastric acid secretion in rats and Heidenhain pouch dogs.  相似文献   

13.
The magnitude of the transmembrane electrical potential difference and the proton gradient across the energy-transducing membrane of Staphylococcus aureus were determined. The delta psi value was shown to rise from 100 to 160 mV upon alkalinization of the medium within the pH range of 5.0-8.0; at the same time, the pH value dropped from 90 to 40 mV. The proton motive force magnitude remained within the range of 191-198 mV at the pH values under study. Membrane potential generation took place, when the respiratory chain and H+-ATPase were operative. An addition of phages to cell suspensions resulted in a decrease of the membrane potential magnitude. Phage infection was effectively suppressed by inhibitors which affect the proton motive force generation in cell membranes of staphylococci.  相似文献   

14.
The water conductivity of desformylgramicidin exceeds the permeability of gramicidin A by two orders of magnitude. With respect to its single channel hydraulic permeability coefficient of 1.1.10(-12) cm(3) s(-1), desformylgramicidin may serve as a model for extremely permeable aquaporin water channel proteins (AQP4 and AQPZ). This osmotic permeability exceeds the conductivity that is predicted by the theory of single-file transport. It was derived from the concentration distributions of both pore-impermeable and -permeable cations that were simultaneously measured by double barreled microelectrodes in the immediate vicinity of a planar bilayer. From solvent drag experiments, approximately five water molecules were found to be transported by a single-file process along with one ion through the channel. The single channel proton, potassium, and sodium conductivities were determined to be equal to 17 pS (pH 2.5), 7 and 3 pS, respectively. Under any conditions, the desformyl-channel remains at least 10 times longer in its open state than gramicidin A.  相似文献   

15.
P-type ATPases couple scalar and vectorial events under optimized states. A number of procedures and conditions lead to uncoupling or slippage. A key branching point in the catalytic cycle is at the cation-bound form of E(1)-P, where isomerization to E(2)-P leads to coupled transport, and hydrolysis leads to uncoupled release of cations to the cis membrane surface. The phenomenon of slippage supports a channel model for active transport. Ability to occlude cations within the channel is essential for coupling. Uncoupling and slippage appear to be inherent properties of P-type cation pumps, and are significant contributors to standard metabolic rate. Heat production is favored in the uncoupled state. A number of disease conditions, include ageing, ischemia and cardiac failure, result in uncoupling of either the Ca(2+)-ATPase or Na(+)/K(+)-ATPase.  相似文献   

16.
Trifluoperazine (TFP), the antipsychotic drug, induces substantial K+ efflux, membrane hyperpolarization and inhibition of H+-ATPase in the yeast Saccharomyces cerevisiae. Investigations on the mechanism of these effects revealed two different processes observed at different incubation conditions. At an acidic pH of 4.5 and an alkaline pH of 7.5, K+ efflux was accompanied by substantial proton influx which led to intracellular acidification and dissipation of delta psi formed by cation efflux. The results indicated nonspecific changes in membrane permeability. Similar results were also observed when cells were incubated at pH 5.5-6.0 with higher concentrations of TFP (above 75 microM). On the other hand, low concentrations of TFP (30-50 microM) at pH 5.5-6.0 caused marked membrane hyperpolarization and K+ efflux unaccompanied by the efflux of other cations and by H+ influx. Our experiments indicate that under these conditions K+ efflux was an active process. (1) K+ efflux proceeded only in the presence of a metabolic substrate and was inhibited by metabolic inhibitors. (2) When 0.3-0.9 mM-KCl was present in the medium at pH 6.0, the concentration of K+ within the cells (measured at the end of the incubation with TFP) was much lower than the theoretical concentration of Kin+ if the distribution of K+ between medium and cell water was at equilibrium (at zero electrochemical gradient). (3) Valinomycin decreased the net K+ efflux and decreased the membrane hyperpolarization induced by TFP, probably by increasing the flux of K+ into the cells along its electrochemical gradient. (4) Conditions which led to active K+ efflux also led to a marked decrease in cellular ATP level. The results indicate that under a specific set of conditions TFP induces translocation of K+ against its electrochemical gradient.  相似文献   

17.
The effects of the glycoside antibiotic sporaviridins (SVDs) on oxidative phosphorylation of rat-liver mitochondria were examined. SVDs released state 4 respiration, dissipated transmembrane electrical potential, and accelerated ATPase activity. These facts demonstrated that SVDs are potent uncouplers of oxidative phosphorylation. During the uncoupling caused by SVDs, large amplitude swelling and oxidation of intramitochondrial NAD(P)H occurred, suggesting that SVDs greatly enhanced nonspecific permeability of the inner mitochondrial membrane. It is suggested that the uncoupling action of SVDs might be caused by dissipation of proton electrochemical potential due to an increase in the permeability of inner mitochondrial membrane.  相似文献   

18.
Bloodstream forms of Trypanosoma brucei were found to maintain a significant membrane potential across their mitochondrial inner membrane (delta psi m) in addition to a plasma membrane potential (delta psi p). Significantly, the delta psi m was selectively abolished by low concentrations of specific inhibitors of the F1F0-ATPase, such as oligomycin, whereas inhibition of mitochondrial respiration with salicylhydroxamic acid was without effect. Thus, the mitochondrial membrane potential is generated and maintained exclusively by the electrogenic translocation of H+, catalysed by the mitochondrial F1F0-ATPase at the expense of ATP rather than by the mitochondrial electron-transport chain present in T. brucei. Consequently, bloodstream forms of T. brucei cannot engage in oxidative phosphorylation. The mitochondrial membrane potential generated by the mitochondrial F1F0-ATPase in intact trypanosomes was calculated after solving the two-compartment problem for the uptake of the lipophilic cation, methyltriphenylphosphonium (MePh3P+) and was shown to have a value of approximately 150 mV. When the value for the delta psi m is combined with that for the mitochondrial pH gradient (Nolan and Voorheis, 1990), the mitochondrial proton-motive force was calculated to be greater than 190 mV. It seems likely that this mitochondrial proton-motive force serves a role in the directional transport of ions and metabolites across the promitochondrial inner membrane during the bloodstream stage of the life cycle, as well as promoting the import of nuclear-encoded protein into the promitochondrion during the transformation of bloodstream forms into the next stage of the life cycle of T. brucei.  相似文献   

19.
The effects of ionophores, which can carry alkali metal cations, on platelet aggregation were examined. At an alkaline extracellular pH, alkali metal cation/H+ exchanger nigericin accelerated aggregation in K+-enriched medium, whereas it rather inhibited aggregation in Na+-enriched medium, even though the intracellular pH was only slightly alkaline. The inhibitory effect of Na+ on platelet aggregation was more clearly shown with the alkali metal cation exchanger gramicidin D. The ionophore had no effect or a slightly accelerative effect on aggregation in K+-enriched medium, whereas it significantly inhibited aggregation induced by thrombin, ADP and platelet activating factor in Na+-enriched medium. Fluorescence studies on fura-2-labeled platelets revealed that in Na+-enriched medium gramicidin D inhibited agonist-induced Ca2+ mobilization both in the presence and absence of extracellular Ca2+. These results suggest that the intracellular Na+ inhibits platelet aggregation by inhibiting Ca2+ mobilization.  相似文献   

20.
Shigeru Itoh 《BBA》1979,548(3):579-595
Salt- or pH-induced change of the rate of reduction of the phtooxidized membrane bound electron transfer components, P-700, by ionic and nonionic reductants added in the outer medium was studied in sonicated chloroplasts.

The rate with the negatively charged reductants increased with the increase of salt concentration at a neutral pH or with the decrease of medium pH. Salts of divalent cations were much more effective than those of monovalent cations. A trivalent cation was even more effective. The rate with a nonionic reductant was little affected by salts.

The change of the reduction rate was analyzed using the Gouy-Chapman theory, which explains the change of reduction rate by the changes of activities of ionic reductants at the charged membrane surface where the reaction takes place. This analysis gave more useful parameters and explained more satisfactorily the case with high-valence cation salts than the Brönsted type analysis. The values for the surface charge density and the surface potential of the membrane surface in the vicinity of P-700 estimated from the analysis were lower than those estimated for the surface in the vicinity of Photosystem II primary acceptor, suggesting the heterogeneity of the thylakoid surface.

The salt-induced surface potential change was shown to affect the activation energy of the reaction between P-700 and the ionic reagent.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号