首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The malarial parasite relies on de novo pyrimidine biosynthesis to maintain its pyrimidine pools, and unlike the human host cell it is unable to scavenge preformed pyrimidines. Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate (DHO) to produce orotate, a key step in pyrimidine biosynthesis. The enzyme is located in the outer membrane of the mitochondria of the malarial parasite. To characterize the biochemical properties of the malarial enzyme, an N-terminally truncated version of P. falciparum DHODH has been expressed as a soluble, active enzyme in E. coli. The recombinant enzyme binds 0.9 molar equivalents of the cofactor FMN and it has a pH maximum of 8.0 (k(cat) 8 s(-1), K(m)(app) DHO (40-80 microm)). The substrate specificity of the ubiquinone cofactor (CoQ(n)) that is required for the oxidation of FMN in the second step of the reaction was also determined. The isoprenoid (n) length of CoQ(n) was a determinant of reaction efficiency; CoQ(4), CoQ(6) and decylubiquinone (CoQ(D)) were efficiently utilized in the reaction, however cofactors lacking an isoprenoid tail (CoQ(0) and vitamin K(3)) showed decreased catalytic efficiency resulting from a 4 to 7-fold increase in K(m)(app). Five potent inhibitors of mammalian DHODH, Redoxal, dichloroallyl lawsone (DCL), and three analogs of A77 1726 were tested as inhibitors of the malarial enzyme. All five compounds were poor inhibitors of the malarial enzyme, with IC(50)'s ranging from 0.1-1.0 mm. The IC(50) values for inhibition of the malarial enzyme are 10(2)-10(4)-fold higher than the values reported for the mammalian enzyme, demonstrating that inhibitor binding to DHODH is species specific. These studies provide direct evidence that the malarial DHODH active site is different from the host enzyme, and that it is an attractive target for the development of new anti-malarial agents.  相似文献   

2.
Two free radical generating systems, xanthine oxidase/hypoxanthine or phenazine methosulfate/NADH, were exposed to air plus He, N2, or Ar at partial pressures ranging from 0.2 to 6.0 MPa, and the rates of production of superoxide, hydroxyl, singlet O2, and H2O2 were measured. All three inert gases acted similarly to enhance the production of superoxide radicals by facilitating interactions between iron and H2O2, or O2 and organic radicals. These reactions occurred at quite low gas partial pressures, only 0.28 MPa, and hydrostatic pressures of up to 6.0 MPa had no effect on radical reactions. Enhanced radical production may be the basis for the inhibition of cellular growth mediated by inert gases, and inert gas enhancement of O2 toxicity.  相似文献   

3.
SA channel mediates superoxide production in HUVECs   总被引:1,自引:0,他引:1  
Superoxide production in response to cyclic stretch (1 Hz, 20% in length) was investigated in human umbilical vein endothelial cells (HUVECs). The basal production of superoxide without stretch increased gradually, while the production of superoxide with stretch increased significantly as compared to that without stretch and it became significant 80 min after the onset of cyclic stretch (P<0.05, n=8-14). The superoxide production increased in a stretch-dependent manner and became significant when stretch was more than 10% (p<0.05, n=11-16). To investigate the involvement of SA channel, we added Gd3+ or EGTA in the reaction solution and examined the stretch-induced superoxide production. In cells stretched in the presence of 20 microM Gd3+, the stretch-induced superoxide production was significantly inhibited (at 120 min, p<0.05, n=8-18). The cyclic stretch-induced superoxide production was also significantly inhibited by the removal of extracellular Ca2+ with 5 mM EGTA (at 120 min, p<0.05, n=8-18). Neither the application of Gd3+ nor the removal of extracellular Ca2+ significantly changed the basal production of superoxide. These data suggest that the stretch-induced superoxide production increases in time- and stretch-dependent manner and that the stretch-induced superoxide production in HUVECs is regulated by Ca2+ influx through SA channels.  相似文献   

4.
Role of superoxide radical in mitochondrial dehydrogenase reactions   总被引:2,自引:0,他引:2  
The reduction of dichlorophenolindophenol by both dihydroorotate dehydrogenase and succinate dehydrogenase in the presence of cyanide is mediated in part by superoxide radical. Qualitative and quantitative distinctions in the mode of dichlorophenolindophenol reduction and in the inhibition by ferrisuperoxide dismutase of this reduction suggest differences in the manner in which the two dehydrogenases are coupled to the electron transport chain.  相似文献   

5.
A simple radioassay for dihydroorotate dehydrogenase (DHO-DHase; EC 1.3.3.1) has been developed. l-[carboxy-14C]Dihydroorotate was prepared from [carboxy-14C]orotic acid using DHO-DHase derived from Zymobacterium oroticum and was purified by elution from DEAE-Sephadex A-25 with 0.2 m ammonium formate, pH 7. DHO-DHase activity in human spleen mitochondria was determined by the release of 14CO2 from the carboxy-14C-labeled l-dihydroorotate, the reaction being coupled with added orotate phosphoribosyltransferase and orotidylate decarboxylase. An apparent Km value of ~5 μm for l-dihydroorotate was established using the radioassay. This value correlated well with results from other methods.  相似文献   

6.
Dehydrogenases that use ubiquinone as an electron acceptor, including complex I of the respiratory chain, complex II, and glycerol-3-phosphate dehydrogenase, are known to be direct generators of superoxide and/or H2O2. Dihydroorotate dehydrogenase oxidizes dihydroorotate to orotate and reduces ubiquinone to ubiquinol during pyrimidine metabolism, but it is unclear whether it produces superoxide and/or H2O2 directly or does so only indirectly from other sites in the electron transport chain. Using mitochondria isolated from rat skeletal muscle we establish that dihydroorotate oxidation leads to superoxide/H2O2 production at a fairly high rate of about 300 pmol H2O2·min−1·mg protein−1 when oxidation of ubiquinol is prevented and complex II is uninhibited. This H2O2 production is abolished by brequinar or leflunomide, known inhibitors of dihydroorotate dehydrogenase. Eighty percent of this rate is indirect, originating from site IIF of complex II, because it can be prevented by malonate or atpenin A5, inhibitors of complex II. In the presence of inhibitors of all known sites of superoxide/H2O2 production (rotenone to inhibit sites in complex I (site IQ and, indirectly, site IF), myxothiazol to inhibit site IIIQo in complex III, and malonate plus atpenin A5 to inhibit site IIF in complex II), dihydroorotate dehydrogenase generates superoxide/H2O2, at a small but significant rate (23 pmol H2O2·min−1·mg protein−1), from the ubiquinone-binding site. We conclude that dihydroorotate dehydrogenase can generate superoxide and/or H2O2 directly at low rates and is also capable of indirect production at higher rates from other sites through its ability to reduce the ubiquinone pool.  相似文献   

7.
The flavoenzymes dihydroorotate dehydrogenases (DHODs) catalyze the fourth and only redox step in the de novo biosynthesis of UMP. Enzymes belonging to class 2, according to their amino acid sequence, are characterized by having a serine residue as the catalytic base and a longer N terminus. The structure of class 2 E. coli DHOD, determined by MAD phasing, showed that the N-terminal extension forms a separate domain. The catalytic serine residue has an environment differing from the equivalent cysteine in class 1 DHODs. Significant differences between the two classes of DHODs were identified by comparison of the E. coli DHOD with the other known DHOD structures, and differences with the class 2 human DHOD explain the variation in their inhibitors.  相似文献   

8.
As chaotropic salts are generally believed to affect water structure in a manner which increases lipophilicity of water, they may seem to be capable of substituting for detergents in the solubilization of particulate enzyme. Although solubilization either by detergents or by chaotropic salts has been demonstrated with several membrane proteins, the effects these agents have on the properties and activity of an enzyme may be quite different. This is illustrated by the effects on mammalian mitochondrial dihydroorotate dehydrogenase. Stability of the solubilized enzymic activity is dependnet on the presence of a detergent and maximum enzymic activity is observed at the critical micelle concentration of the detergent. Addition of low concentrations of various anions of the chaotropic series further enhances activity while higher concentrations of these anions, although increasing solubility of the enzyme, irreversibly inhibit catalysis.  相似文献   

9.
The inactivation of dihydroorotate dehydrogenase by gamma irradiation in dilute aqueous solution has been investigated. The activity of the enzyme decreased exponentially as a function of the absorbed dose under aerated and nitrous oxide-saturated conditions. The contributions of the individual radical species derived from water radiolysis were estimated from the inactivation results observed under aerated, argon-saturated, and nitrous oxide-saturated conditions. The hydrogen atom and hydroxyl radical were found to be important in enzyme inactivation. The effect of selected inorganic radical anions such as Br.2-, I.2-, and (SCN).2- on the enzyme activity was also studied, and the results implicate the possible involvement of cysteine and tyrosine residues in the catalytic activity of dihydroorotate dehydrogenase. Changes in the kinetic parameters (Michaelis-Menten constant, Km, and maximal velocity, Vmax) due to irradiation under the conditions investigated suggest that radiation-induced inactivation is due to modification of the substrate binding sites and that of the active site residues in the enzyme. Evidence for the reduction of iron-sulfur centers in the enzyme during the inactivation process has been put forward from the difference spectrum of the irradiated dihydroorotate dehydrogenase. It has also been shown by electrophoretic studies that radiation-induced inactivation was not due to any fragmentation of the protein structure or the formation of any intermolecular crosslinking.  相似文献   

10.
Paraquat mediates a superoxide dismutase-inhibitable reduction of cytochrome c by suspensions of Escherichia coli B. Glucose was most effective in providing electrons for this cytochrome c reduction, but other nutrients could serve in this capacity, provided the cells were preconditioned by growth on these nutrients. Paraquat reduction depended upon a NADPH:paraquat diaphorase, present in the cytosol. Reduced paraquat could diffuse across the cell envelope and react with dioxygen, in the suspending medium, thus generating O2- in that compartment. Most of the paraquat reduced in the cell, under the conditions used, reoxidized in situ and most of the O2- production was thus intracellular. The partitioning of reduced paraquat between intracellular and extracellular compartments, prior to reaction with dioxygen, depended upon intracellular pO2 and any strategy which raised intracellular pO2 decreased the efflux of reduced paraquat and thus decreased extracellular O2- production. Extracellular O2- and H2O2 did contribute to cell damage in proportion to the amount produced. O2- appeared to be unable to cross the cell envelope in either direction and the only O2- which was effective in raising the rate of biosynthesis of the manganese-superoxide dismutase, was that generated within the cell.  相似文献   

11.
12.
Angiotensin II and endothelin-1 (ET) are two hormones involved in cardiovascular diseases and well known for their capacity to induce free radical generation in vascular and cardiac tissues. In addition to its prooxidative effect, angiotensin II can increase the synthesis of ET-1 in vascular smooth muscle cells (VSMC). Our objective was to determine whether the ET-1 synthesis in VSMC is involved in angiotensin II-induced superoxide anion production in rats. Our results show that treatments of isolated VSMC with angiotensin II and ET increased superoxide. However, this increase occurred in a bimodal fashion for angiotensin II with a fast transient production (10 min) and a late sustained production (6 h), while ET-1 induced superoxide formation after a delay of 6 h. LU302872 and BQ-123, a nonselective and a selective ETA receptor antagonists, respectively, prevented angiotensin II-induced superoxide anion production only during the late phase. In contrast, BQ-3020, a selective ETB receptor antagonist, had no effect. In vivo, LU302872 reduced the aortic superoxide production induced by angiotensin II administered for 12 days. In conclusion, our results suggest that the superoxide generation induced by chronic angiotensin II infusion may be mediated by ET-1 acting on ETA receptors in VSMC in vitro. Furthermore, this effect appears to contribute to the excess superoxide production during the chronic activation of the renin-angiotensin system in vivo.  相似文献   

13.
In animals, dihydroorotate dehydrogenase (DHODH) is a mitochondrial protein that carries out the fourth step in de novo pyrimidine biosynthesis. Because this is the only enzyme of this pathway that is localized to mitochondria and because the enzyme is cytosolic in some bacteria and fungi, we carried out studies to understand the mode of targeting of animal DHODH and its submitochondrial localization. Analysis of fractionated rat liver mitochondria revealed that DHODH is an integral membrane protein exposed to the intermembrane space. In vitro-synthesized Drosophila, rat and human DHODH proteins were efficiently imported into the intermembrane space of isolated yeast mitochondria. Import did not alter the size of the in vitro synthesized protein, nor was there a detectable size difference when compared to the DHODH protein found in vivo. Thus, there is no apparent proteolytic processing of the protein during import either in vitro or in vivo. Import of rat DHODH into isolated yeast mitochondria required inner membrane potential and was at least partially dependent upon matrix ATP, indicating that its localization uses the well described import machinery of the mitochondrial inner membrane. The DHODH proteins of animals differ from the cytosolic proteins found in some bacteria and fungi by the presence of an N-terminal segment that resembles mitochondrial-targeting presequences. Deletion of the cationic portion of this N-terminal sequence from the rat DHODH protein blocked its import into isolated yeast mitochondria, whereas deletion of the adjacent hydrophobic segment resulted in import of the protein into the matrix. Thus, the N-terminus of the DHODH protein contains a bipartite signal that governs import and correct insertion into the mitochondrial inner membrane.  相似文献   

14.
Dihydroorotate dehydrogenase (DHODH) is the fourth enzyme in the de novo pyrimidine biosynthetic pathway and has been exploited as the target for therapy against proliferative and parasitic diseases. In this study, we report the crystal structures of DHODH from Leishmania major, the species of Leishmania associated with zoonotic cutaneous leishmaniasis, in its apo form and in complex with orotate and fumarate molecules. Both orotate and fumarate were found to bind to the same active site and exploit similar interactions, consistent with a ping-pong mechanism described for class 1A DHODHs. Analysis of LmDHODH structures reveals that rearrangements in the conformation of the catalytic loop have direct influence on the dimeric interface. This is the first structural evidence of a relationship between the dimeric form and the catalytic mechanism. According to our analysis, the high sequence and structural similarity observed among trypanosomatid DHODH suggest that a single strategy of structure-based inhibitor design can be used to validate DHODH as a druggable target against multiple neglected tropical diseases such as Leishmaniasis, Sleeping sickness and Chagas' diseases.  相似文献   

15.
The survival of the malaria parasite Plasmodium falciparum is dependent upon the de novo biosynthesis of pyrimidines. P. falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the fourth step in this pathway in an FMN-dependent reaction. The full-length enzyme is associated with the inner mitochondrial membrane, where ubiquinone (CoQ) serves as the terminal electron acceptor. The lipophilic nature of the co-substrate suggests that electron transfer to CoQ occurs at the two-dimensional lipid-solution interface. Here we show that PfDHODH associates with liposomes even in the absence of the N-terminal transmembrane-spanning domain. The association of a series of ubiquinone substrates with detergent micelles was studied by isothermal titration calorimetry, and the data reveal that CoQ analogs with long decyl (CoQ(D)) or geranyl (CoQ(2)) tails partition into detergent micelles, whereas that with a short prenyl tail (CoQ(1)) remains in solution. PfDHODH-catalyzed reduction of CoQ(D) and CoQ(2), but not CoQ(1), is stimulated as detergent concentrations (Tween 80 or Triton X-100) are increased up to their critical micelle concentrations, beyond which activity declines. Steady-state kinetic data acquired for the reaction with CoQ(D) and CoQ(2) in substrate-detergent mixed micelles fit well to a surface dilution kinetic model. In contrast, the data for CoQ(1) as a substrate were well described by solution steady-state kinetics. Our results suggest that the partitioning of lipophilic ubiquinone analogues into detergent micelles needs to be an important consideration in the kinetic analysis of enzymes that utilize these substrates.  相似文献   

16.
The influence of substrate inhibition on xanthine oxidase-intramolecular electron transport was studied by steady-state kinetic analysis. Experiments with hypoxanthine and xanthine up to 900 microM indicated an inhibition pattern which fitted an equation of the general form nu 0 = nu max . [S]/(Km + a[S] + b[S]2/Ki). Univalent electron flux to oxygen was favored at substrate concentrations above 50 microM. This augmentation of univalent flux percentage that appeared at a high substrate concentration was greater for hypoxanthine that xanthine and at pH 8.3 than at 9.5. Our results support a mechanism of inhibition in which a substrate-reduced enzyme, non-productive Michaelis complex was formed. It is possible that this non-productive complex favored the univalent pathway of enzyme reoxidation (superoxide production) by increasing the midpoint redox potential of the molybdenum active site.  相似文献   

17.
18.
Dihydroorotate dehydrogenase in rat brain mitochondria is capable of producing superoxide. The presence of a superoxide dismutase activity in brain mitochondria, similar to that found in mitochondria from chicken liver, suggests that production of superoxide may occur in vivo. Formation of superoxide is not dependent upon reduction of cytochrome b, rather, superoxide production is competitive with cytochrome b reduction. Phenazine methosulfate apparently competes with both oxygen (superoxide production) and cytochrome b as an electron carrier but does not enhance reduction of dichlorophenolindophenol or cytochrome c.  相似文献   

19.
Human spleen dihydroorotate dehydrogenase is associated with the mitochondrial membrane and is linked to the respiratory chain via ubiquinone. The enzyme activity was unaffected by pyridine nucleotides. The product of the reaction, orotate, was a potent inhibitor. However, a range of other naturally occurring pyrimidines or purines had no significant effect on the activity. No evidence for the involvement of a complexed metal ion or for an active sulfhydryl group was obtained. Purification of the enzyme was achieved by preparation of an acetone powder and extraction with Triton X-100, followed by preparative polyacrylamide gel electrophoresis. Activity was observed by the addition of the artificial electron acceptors, ubiquinone 50 or PMS. Purification resulted in alteration of the pH optimum and of other kinetic characteristics. Two molecular-weight species, of molecular weight 88,000 and 98,000, were consistently observed. The properties of the human spleen enzyme were similar in principle to those for the rat liver enzyme. Differences in the mode of linkage to the respiratory chain for the mitochondrially bound enzyme, and in the characteristics of the purified enzyme, were observed.  相似文献   

20.
Therapeutic agents brequinar sodium and leflunomide (Arava) work by binding in a hydrophobic tunnel formed by a highly variable N-terminus of family 2 dihydroorotate dehydrogenase (DHODH). The X-ray crystallographic structure of an analog of brequinar bound to human DHODH was determined. In silico screening of a library of compounds suggested another subset of brequinar analogs that do not inhibit human DHODH as potentially effective inhibitors of Plasmodium falciparum DHODH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号